

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

Year : 2015 - 2020

FATIMA COLLEGE (AUTONOMOUS), MADURAI – 625018

NAME OF THE PROGRAMME: B.SC. PHYSICS

PROGRAMME CODE: UAPH

PROGRAMME OUTCOMES:

The learners will be able to

PO1: Apply acquired scientific knowledge to solve complex issues.

PO2: Attain Analytical skills to solve complex cultural, societal and environmental issues.

PO3: Employ latest and updated tools and technologies to analyse complex issues.

PO4: Demonstrate Professional Ethics that foster Community, Nation and Environment Building Initiatives.

Programme Specific Outcomes:

Students will

PSO1: Acquire thorough knowledge of the basic concepts of the frontier areas of Physics comprising Mechanics, Properties of matter, Electromagnetism, Electronics, Thermodynamics, Modern Physics, optics, Medical Physics and Opto electronics.

PSO2: Understand and solve the physics problems in everyday life using the acquired basic knowledge.

PSO3: develop skills to perform experiments based on the theoretical understanding

PSO4: Apply the knowledge acquired to analyse and design models in the versatile realm of physics.

PSO5: Equip with the essential foundations for higher education and research in physics.

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

Year : 2015 - 2020

2019 - 2020

Course Code	Course Title	Course Outcomes	
19P1CC1	Mechanics and Properties of Matter	CO 1: To understand in depth the gravitational force, field, potential and energy. CO 2: To study the acceleration due to gravity at various positions CO 3:To gain knowledge about the properties of matter and compute the same CO 4:To discuss the mechanics of fluid motion and its	
19P1CC2	Thermal Physics	applications CO 1: Students will be able to analyse a microscopic approach and seek to account for the macroscopic properties of a gas in terms of properties of its molecules CO 2: Students will be able to explain the classical Maxwell's distribution law of velocity and its inference. CO 3: Students will be able to describe molecular collisions and its mean free path, understand the process of	

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		thermal conductivity, viscosity and diffusion in gases CO 4: Students will be able to depict the manner in which the energy changes takes place and outline the different methods to produce low temperature CO 5: Students will be able to demonstrate the liquefaction of gases and explain the nature of gases in the neighbourhood of absolute zero temperature.
19M3ACP1/19C1AC P1/19G3ACP1	Allied Physics - I	CO 1: Define and discuss about the simple harmonic waves and its oscillations and laws of transverse vibrations of strings. CO 2: Classify and describe the properties of matter such as electricity, viscosity and surface tension. CO 3: Summarise the basic concepts of thermal physics and apply the laws of thermodynamics in higher learning concepts such as entropy and its reversible and irreversible process. CO 4: Explain the principles and laws used in electricity and magnetism those are useful in defining the energy of a capacitor and magnetic effect of electric current.

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		CO 5: Demonstrate the properties of geometrical optics and
		explain the refraction and dispersion through a prism.
19P1NME/	Physics in everyday Life	CO 1: Discuss and illustrate the importance of paying
19P2NME		attention to the basic units of physical quantities and
		the standards accepted for their measurement, describe
		the motion in terms of particle's position, velocity and
		acceleration and analyse the cause of motion
		CO 2: Understand the concepts of heat, waves, sound,
		electricity, magnetism and explore their nature.
19B1ACP1	Digital Principles and	On completion of the course, students will be able to
	Applications	
	1-PP-2003	CO 1: Define the different types of number systems and
		explain the basic and universal logic circuits
		CO 2: Simplify the logic expressions using Boolean laws and
	AMDL	Kmap
		CO 3: describe the principles behind the data processing and
	N/A	arithmetic circuits
		CO 4: explain the working of basic flipflops and design

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		master slave flipflops
		CO 5: Understand the working of shift registers and counters
	ANA	describe D/A and A/D conversion techniques
19P2CC4	Oscillations and Waves	CO 1: To understand simple harmonic motion
		CO 2: To understand Principle of Superposition and apply to
		derive mathematical representation of stationary
		waves, interference waves and beats. Determine the
		conditions for the same.
		CO 3: To understand the Doppler effect in acoustics and
		apply the same and solve problems
		CO 4: To distinguish the different range of acoustic waves.
		CO 5: To study the ultrasonic waves generation and
		application of the same
19P2CC5	Applied Mechanics	CO 1: Students will be able to demonstrate an
		understanding of central forces and explain Kepler's
		laws of Planetary motion
		CO 2: Students will be able to compute the path of projectile
		launched with horizontal and vertical velocity

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		components in the Earth's gravity
	ANA	CO 3: Students will be able to evaluate the interrelationship between energy and work
		CO 4: Students will be able to describe the motion of the center of mass of an object, state the conservation principles involving momentum and explore its applications, analyse collisions between two objects CO 5: Students will be able to apply law of conservation angular momentum appropriately in rigid body rotations, relate the rotational and translational parameters based on rotational kinematics.
19M4ACP3/ 19C2ACP3/ 19G4ACP3	Allied Physics- II	 CO 1: Students will be able to categorize and clarify the different optical phenomena of interference, diffraction, polarization. CO 2: Students will be able to explain the atom model and calculate the total energy of an atom and account for the spectral series of hydrogen atom. CO 3: Students will be able to elucidate the models of

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		nuclear structure and to learn the principle behind atom bomb, nuclear reactors. CO 4: Students will be able to summarize the working principle of p-n junction diode in forward and reverse biasing, its V-I characteristics, the Zener Diode, n-p-n transistor in common emitter characteristics. CO 5: Students will be able to classify the number system and demonstrate the skill in conversion of Number
		systems, Boolean algebra and its associated laws.
Course Code	Course Title	Course Objective
P3CC6	Electromagnetism	This course imparts a sound knowledge in
		electromagnetism.
M3ACP1/ G3ACP1	Allied Physics I	The course provides a conceptually based exposure to the
		fundamental principal and processes of significant topics
	171	of physics like Waves and Oscillations, Properties of
		matter, Electricity and Magnetism and Geometrical Optics

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

P3SB1	Biomechanics	This course aims to introduce the Biomechanical concepts and to give an idea about the anatomic pulleys and lever systems	
P4CC7	Electronics	The aim of this course is to provide a basic knowledge in semiconductor, transistor, amplifier, oscillator and digital electronics	
P4CC8	Major Practicals-II	This laboratory course explores the basic principles of electricity and magnetism, basic elements of electric circuits through experiments	
M4ACP2/ G4ACP2	Allied Physics II	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics	
M4ACP3/ G4ACP3	Allied Practicals	This course enables the student to develop broad array of basic skills and tools of experimental physics	
P4SB2	Physics of Stars	This course briefly explains the life cycle of a star. It	

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

	ANA.	throws light on various nuclear reactions taking place in a star. It explains about the mysterious objects of the universe. It creates passion for Astronomy among the students
P5CC9	Electronics and Communication	This course aims at the fundamentals of digital electronics, flip-flops, registers, counters and D/A & A/D converters. It also exposes the students to modulation, satellite communication and fibre optics communication
P5CC10	Optics	• This course aims at giving a detailed study of interference, diffraction, polarization, Holography, Laser and Maser
P5SB3	Physics of Measuring Instruments-1	This course enable the students to learn the principles behind thermo dynamical measurements and mechanical and electrical measurements.
P5SB4	Physics of Medical Instruments-I	To enable the student learn the physics principles behind the medical instruments used for diagnosis especially pressure, sound, light and electricity

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

P6CC11	Thermodynamics and Statistical Mechanics	The aim of this course is to deal with thermodynamics, entropy and thermodynamic potentials. This course also deals with statistical thermodynamics and applications of statistics to gases.
P6CC12	Modern Physics	This course deals with the wave properties of particles and fundamentals of Quantum Mechanics. Nuclear models and special relativity are dealt with in detail.
P6CC13	Major Practicals-III	This laboratory course explores the basic principles of electronics through experiments
P6CC14	Major Practicals-IV	This laboratory course explores the basic principles of non-electronics through experiments
P6ME1/2	Microprocessor/Medical Physics	 Microprocessor: This course explores the assembly language program codes and simple microprocessor programs Medical Physics: This course deals with the applications of electricity and magnetism in medicine, light in medicine, nuclear medicine, radiation protection in

Criterion: II - Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		medicine and computers in medicine
P6ME2/3	Opto Electronics/Energy Physics	 Optoelectronics: Optoelectronics is a recent field. This course aims at giving an idea about fibre optics systems and communication. This course also deals with the LEDs and stimulated emission in intrinsic semiconductors, photo detectors and modulation methods. Energy Physics: This course covers the different sources of renewable energy sector and its applications.
P6SB5	Physics of Measuring Instruments - II	This course enable the students to learn the physics principles behind astronomical measurements, electron microscopes and X-ray diffraction measurements
P6SB6	Physics of Medical Instruments-II	This course enables the students to learn the working principles of medical instruments used in radiography and nuclear medicine.
	VA.	DURA

Criterion : II — Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

Year : 2015 - 2020

2018 - 2019

2018 - 2019		A CO	
Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	Course Objective
P1CC1	Mechanics and Properties of Matter	National	The objective of this course is to understand the basic properties of matter and mechanics of fluids
P1CC2	Thermal Physics	National	This course deals with molecular properties of gases, Maxwellian Distribution of speeds in an Ideal gas, transport phenomena and production of very low temperatures.
C1ACP1	Allied Physics-I	National 4 10 11 18	This course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter,

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

P1NME1	Physics in Everyday Life	National	 Electricity and Magnetism and Geometrical Optics. Aim of this course is to enable the student to understand the physics concepts in day today life.
B1ACP1	Digital Principles and Applications	National	Aim of this course is to enable the students to understand digital principles and applications
P2CC3	Oscillations, Waves and Fluid Dynamics	National	This course enables to understand waves, oscillations and its applications in human ear, musical instruments and to know about Doppler effect, Ultrasonic and various applications of them.
P2CC4	Advanced Mechanics	National	• This course deals with understanding of central force, Projectile motion, work and kinetic energy linear momentum, collision and angular momentum.

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

P2CC5	Major Practicals-I	National	The course provides hands on training to determine the properties of materials relevant to the theory learnt in core courses.
C2ACP2	Allied Physics II	National A D	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics.
C2ACP3	Allied Practicals	National	This course enables the student to develop broad array of basic skills and tools of experimental physics.
P2NME2	Physics in Everyday Life	National	Aim of this course is to enable the student to understand the physics concepts in day today life.
P3CC6	Electromagnetism	National	This course imparts a sound knowledge in electromagnetism.

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

M3ACP1/ G3ACP1	Allied Physics I	National	 The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical Optics
P3SB1	Biomechanics	National	This course aims to introduce the Biomechanical concepts and to give an idea about the anatomic pulleys and lever systems
P4CC7	Electronics	National	The aim of this course is to provide a basic knowledge in semiconductor, transistor, amplifier, oscillator and digital electronics
P4CC8	Major Practicals-II	National	This laboratory course explores the basic principles of electricity and magnetism, basic elements of electric circuits through experiments
M4ACP2/	Allied Physics II	National	The course provides a conceptually based

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

G4ACP2		SA CO	exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics
M4ACP3/ G4ACP3	Allied Practicals	National	This course enables the student to develop broad array of basic skills and tools of experimental physics
P4SB2	Physics of Stars	National	This course briefly explains the life cycle of a star. It throws light on various nuclear reactions taking place in a star. It explains about the mysterious objects of the universe. It creates passion for Astronomy among the students
P5CC9	Electronics and Communication	National	This course aims at the fundamentals of digital electronics, flip-flops, registers, counters and D/A & A/D converters. It also exposes the students to modulation, satellite

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

			communication and fibre optics communication
P5CC10	Optics	National E A	This course aims at giving a detailed study of interference, diffraction, polarization, Holography, Laser and Maser
P5SB3	Physics of Measuring Instruments-1	National	This course enables the students to learn the principles behind thermo dynamical measurements and mechanical and electrical measurements.
P5SB4	Physics of Medical Instruments-I	National	To enable the student learn the physics principles behind the medical instruments used for diagnosis especially pressure, sound, light and electricity
P6CC11	Thermodynamics and Statistical Mechanics	National	• The aim of this course is to deal with thermodynamics, entropy and thermodynamic potentials. This course also deals with statistical thermodynamics and applications of statistics to gases.

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

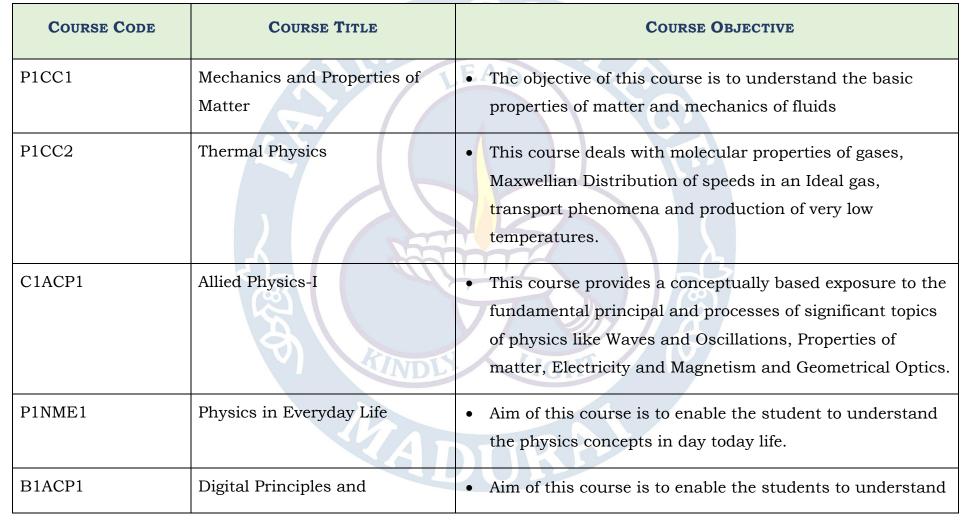
P6CC12	Modern Physics	National	This course deals with the wave properties of particles and fundamentals of Quantum Mechanics. Nuclear models and special relativity are dealt with in detail.
P6CC13	Major Practicals-III	National AD	This laboratory course explores the basic principles of electronics through experiments
P6CC14	Major Practicals-IV	National	This laboratory course explores the basic principles of non-electronics through experiments
P6ME1/2	Microprocessor/Medical Physics	National	 Microprocessor: This course explores the assembly language program codes and simple microprocessor programs Medical Physics: This course deals with the applications of electricity and magnetism in medicine, light in medicine, nuclear medicine, radiation protection in medicine and computers in medicine
P6ME2/3	Opto Electronics/Energy Physics	National	Optoelectronics: Optoelectronics is a recent field. This course aims at giving an idea about fibre optics systems and communication. This course also deals with

Criterion: II - Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		A CO	the LEDs and stimulated emission in intrinsic semiconductors, photo detectors and modulation methods. • Energy Physics: This course covers the different sources of renewable energy sector and its applications.
P6SB5	Physics of Measuring Instruments - II	National	This course enable the students to learn the physics principles behind astronomical measurements, electron microscopes and X-ray diffraction measurements
P6SB6	Physics of Medical Instruments-II	National	This course enables the students to learn the working principles of medical instruments used in radiography and nuclear medicine.


Criterion: II - Teaching-Learning and Evaluation

Metric : 2.6.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) - B.Sc. PHYSICS

Year : 2015 - 2020

2017 - 2018

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

	Applications	digital principles and applications
P2CC3	Oscillations, Waves and Fluid Dynamics	This course enables to understand waves, oscillations and its applications in human ear, musical instruments and to know about Doppler effect, Ultrasonic and various applications of them.
P2CC4	Advanced Mechanics	This course deals with understanding of central force, Projectile motion, work and kinetic energy linear momentum, collision and angular momentum.
P2CC5	Major Practicals-I	• The course provides hands on training to determine the properties of materials relevant to the theory learnt in core courses.
C2ACP2	Allied Physics II	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics.
C2ACP3	Allied Practicals	This course enables the student to develop broad array of

Criterion : II — Teaching-Learning and Evaluation

: 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Metric

Course Outcomes (COs) – B.Sc. PHYSICS

		basic skills and tools of experimental physics.
P2NME2	Physics in Everyday Life	Aim of this course is to enable the student to understand the physics concepts in day today life.
P3CC6	Electromagnetism	This course imparts a sound knowledge in electromagnetism.
M3ACP1/ G3ACP1	Allied Physics I	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical Optics
P3SB1	Biomechanics	This course aims to introduce the Biomechanical concepts and to give an idea about the anatomic pulleys and lever systems
P4CC7	Electronics	The aim of this course is to provide a basic knowledge in semiconductor, transistor, amplifier, oscillator and digital electronics
P4CC8	Major Practicals-II	This laboratory course explores the basic principles of
		22

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		electricity and magnetism, basic elements of electric circuits through experiments
M4ACP2/ G4ACP2	Allied Physics II	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics
M4ACP3/ G4ACP3	Allied Practicals	This course enables the student to develop broad array of basic skills and tools of experimental physics
P4SB2	Physics of Stars	• This course briefly explains the life cycle of a star. It throws light on various nuclear reactions taking place in a star. It explains about the mysterious objects of the universe. It creates passion for Astronomy among the students
P5CC9	Electronics and Communication	This course aims at the fundamentals of digital electronics, flip-flops, registers, counters and D/A & A/D converters. It also exposes the students to modulation, satellite communication and fibre optics communication

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

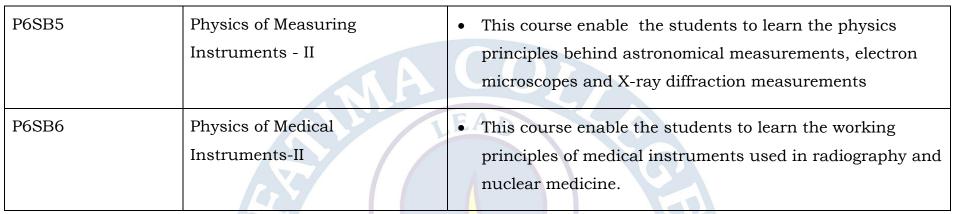
P5CC10	Optics	This course aims at giving a detailed study of interference, diffraction, polarization, Holography, Laser and Maser
P5SB3	Physics of Measuring Instruments-1	This course enable the students to learn the principles behind thermodynamical measurements and mechanical and electrical measurements.
P5SB4	Physics of Medical Instruments-I	To enable the student learn the physics principles behind the medical instruments used for diagnosis especially pressure, sound, light and electricity
P6CC11	Thermodynamics and Statistical Mechanics	The aim of this course is to deal with thermodynamics, entropy and thermodynamic potentials. This course also deals with statistical thermodynamics and applications of statistics to gases.
P6CC12	Modern Physics	This course deals with the wave properties of particles and fundamentals of Quantum Mechanics. Nuclear models and special relativity are dealt with in detail.
P6CC13	Major Practicals-III	This laboratory course explores the basic principles of

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		electronics through experiments
P6CC14	Major Practicals-IV	This laboratory course explores the basic principles of non-electronics through experiments
P6ME1/2	Microprocessor/Medical Physics	 Microprocessor: This course explores the assembly language program codes and simple microprocessor programs Medical Physics: This course deals with the applications of electricity and magnetism in medicine, light in medicine, nuclear medicine, radiation protection in medicine and computers in medicine
P6ME2/3	Opto Electronics/Energy Physics	 Optoelectronics: Optoelectronics is a recent field. This course aims at giving an idea about fibre optics systems and communication. This course also deals with the LEDs and stimulated emission in intrinsic semiconductors, photo detectors and modulation methods. Energy Physics: This course covers the different sources of renewable energy sector and its applications.



Criterion: II - Teaching-Learning and Evaluation

Metric : 2.6.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

Year : 2015 - 2020

2016 - 2017

Course Code	Course Title	Course Objective
P1CC1	Mechanics And Properties Of Matter	The objective of this course is to understand the basic properties of matter and mechanics of fluids
P1CC2	Thermal Physics	This course deals with molecular properties of gases, Maxwellian Distribution of speeds in an Ideal gas,

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		transport phenomena and production of very low
		temperatures.
C1ACP1	Allied Physics-I	This course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical Optics.
P1NME1	Physics In Everyday Life	Aim of this course is to enable the student to understand the physics concepts in day today life.
B1ACP1	Digital Principles and Applications	Aim of this course is to enable the students to understand digital principles and applications
P2CC3	Oscillations, Waves and Fluid Dynamics	This course enables to understand waves, oscillations and its applications in human ear, musical instruments and to know about Doppler effect, Ultra Sonics and various applications of them.
P2CC4	Advanced Mechanics	This course deals with understanding of central force,

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

C2ACP2 Allied Physics II The course provides a the fundamental princitopics of physics like graphysics, Nuclear Physics, Nuclear Physics, Nuclear Physics and tools P2NME2 Physics in Everyday Life P3CC6 Electromagnetism The course provides a the fundamental princitopics of physics like graphysics, Nuclear Physics are the fundamental princitopics of physics like graphysics, Nuclear Physics and tools This course enables the of basic skills and tools This course is to understand the physics P3CC6 Electromagnetism This course imparts a second course in parts a s	and kinetic energy linear nd angular momentum.
the fundamental prince topics of physics like g Physics, Nuclear Physi C2ACP3 Allied Practicals This course enables th of basic skills and tools P2NME2 Physics in Everyday Life Aim of this course is to understand the physic P3CC6 Electromagnetism • This course imparts a second	ands on training to determine the relevant to the theory learnt in
P2NME2 Physics in Everyday Life • Aim of this course is to understand the physics P3CC6 Electromagnetism • This course imparts a second control of the course imparts a second course imparts a secon	conceptually based exposure to ipal and processes of significant eometrical Optics, Atomic cs and Electronics.
P3CC6 Electromagnetism • This course imparts a s	e student to develop broad array s of experimental physics.
	enable the student to s concepts in day today life.
electromagnetism.	sound knowledge in
M3ACP1/ Allied Physics I • The course provides a	conceptually based exposure to

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

G3ACP1	MA	the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical Optics
P3SB1	Biomechanics	This course aims to introduce the Biomechanical concepts and to give an idea about the anatomic pulleys and lever systems
P4CC7	Electronics	The aim of this course is to provide a basic knowledge in semiconductor, transistor, amplifier, oscillator and digital electronics
P4CC8	Major Practicals-II	This laboratory course explores the basic principles of electricity and magnetism, basic elements of electric circuits through experiments
M4ACP2/ G4ACP2	Allied Physics II	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

M4ACP3/ G4ACP3	Allied Practicals	This course enables the student to develop broad array of basic skills and tools of experimental physics
P4SB2	Physics of Stars	• This course briefly explains the life cycle of a star. It throws light on various nuclear reactions taking place in a star. It explains about the mysterious objects of the universe. It creates passion for Astronomy among the students
P5CC9	Electronics and Communication	• This course aims at the fundamentals of digital electronics, flip-flops, registers, counters and D/A & A/D converters. It also exposes the students to modulation, satellite communication and fibre optics communication
P5CC10	Optics	This course aims at giving a detailed study of interference, diffraction, polarization, Holography, Laser and Maser
P5SB3	Physics of Measuring Instruments-	This course enable the students to learn the principles behind thermo dynamical measurements and

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

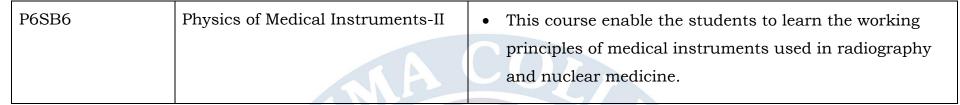
	1	mechanical and electrical measurements.
P5SB4	Physics of Medical Instruments-I	To enable the student learn the physics principles behind the medical instruments used for diagnosis especially pressure, sound, light and electricity
P6CC11	Thermodynamics and Statistical Mechanics	The aim of this course is to deal with thermodynamics, entropy and thermodynamic potentials. This course also deals with statistical thermodynamics and applications of statistics to gases.
P6CC12	Modern Physics	This course deals with the wave properties of particles and fundamentals of Quantum Mechanics. Nuclear models and special relativity are dealt with in detail.
P6CC13	Major Practicals-III	This laboratory course explores the basic principles of electronics through experiments
P6CC14	Major Practicals-IV	This laboratory course explores the basic principles of non-electronics through experiments
P6ME1/2	Microprocessor/Medical Physics	Microprocessor: This course explores the assembly
101121/2	Microprocessory Medical Filysics	31

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		language program codes and simple microprocessor programs • Medical Physics: This course deals with the applications of electricity and magnetism in medicine, light in medicine, nuclear medicine, radiation protection in medicine and computers in medicine
P6ME2/3	Opto Electronics/Energy Physics	 Optoelectronics: Optoelectronics is a recent field. This course aims at giving an idea about fibre optics systems and communication. This course also deals with the LEDs and stimulated emission in intrinsic semiconductors, photo detectors and modulation methods. Energy Physics: This course covers the different sources of renewable energy sector and its applications.
P6SB5	Physics of Measuring Instruments - II	This course enable the students to learn the physics principles behind astronomical measurements, electron microscopes and X-ray diffraction measurements



Criterion: II - Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

Year : 2015 - 2020

2015 - 2016

Course Code	Course title	Course Objective
P1CC1	Mechanics and properties of matter	The objective of this course is to understand the basic properties of matter and mechanics of fluids
P1CC2	Thermal physics	 This course deals with molecular properties of gases, Maxwellian Distribution of speeds in an Ideal gas, transport phenomena and production of very low temperatures.
C1ACP1	Allied physics- I	This course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		Optics.
P1NME1	Physics in everyday life	Aim of this course is to enable the student to understand the physics concepts in day today life.
B1ACP1	Digital principles and applications	Aim of this course is to enable the students to understand digital principles and applications
P2CC3	Oscillations, waves and fluid dynamics	This course enables to understand waves, oscillations and its applications in human ear, musical instruments and to know about Doppler effect, Ultrasonic and various applications of them.
P2CC4	Advanced Mechanics	This course deals with understanding of central force, Projectile motion, work and kinetic energy linear momentum, collision and angular momentum.
P2CC5	Major Practicals - I	The course provides hands on training to determine the properties of materials relevant to the theory learnt in core courses.
C2ACP2	Allied Physics II	The course provides a conceptually based exposure to
		34

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

	A A	the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics.
C2ACP3	Allied Practicals	This course enables the student to develop broad array of basic skills and tools of experimental physics.
P2NME2	Physics in everyday life	Aim of this course is to enable the student to understand the physics concepts in day today life.
P3CC6	Electromagnetism	This course imparts a sound knowledge in electromagnetism.
M3ACP1/ G3ACP1	Allied physics I	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like Waves and Oscillations, Properties of matter, Electricity and Magnetism and Geometrical Optics
P3SB1	Biomechanics	This course aims to introduce the Biomechanical concepts and to give an idea about the anatomic pulleys

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		and lever systems
P4CC7	Electronics	The aim of this course is to provide a basic knowledge in semiconductor, transistor, amplifier, oscillator and digital electronics
P4CC8	Major practical-II	This laboratory course explores the basic principles of electricity and magnetism, basic elements of electric circuits through experiments
M4ACP2/ G4ACP2	Allied physics II	The course provides a conceptually based exposure to the fundamental principal and processes of significant topics of physics like geometrical Optics, Atomic Physics, Nuclear Physics and Electronics
M4ACP3/ G4ACP3	Allied Practicals	This course enables the student to develop broad array of basic skills and tools of experimental physics
P4SB2	Physics of stars	This course briefly explains the life cycle of a star. It throws light on various nuclear reactions taking place in

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

	S A A	a star. It explains about the mysterious objects of the universe. It creates passion for Astronomy among the students
P5CC9	Electronics and communication	• This course aims at the fundamentals of digital electronics, flip-flops, registers, counters and D/A & A/D converters. It also exposes the students to modulation, satellite communication and fibre optics communication
P5CC10	Optics	This course aims at giving a detailed study of interference, diffraction, polarization, Holography, Laser and Maser
P5SB3	Physics of measuring instruments-1	This course enables the students to learn the principles behind thermo dynamical measurements and mechanical and electrical measurements.
P5SB4	Physics of medical instruments- I	To enable the student learn the physics principles behind the medical instruments used for diagnosis especially pressure, sound, light and electricity

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

P6CC11	Thermodynamics and statistical mechanics	The aim of this course is to deal with thermodynamics, entropy and thermodynamic potentials. This course also deals with statistical thermodynamics and applications of statistics to gases.
P6CC12	Modern physics	This course deals with the wave properties of particles and fundamentals of Quantum Mechanics. Nuclear models and special relativity are dealt with in detail.
P6CC13	Major practical-III	This laboratory course explores the basic principles of electronics through experiments
P6CC14	Major Practicals-IV	This laboratory course explores the basic principles of non-electronics through experiments
P6ME1/2	Microprocessor/medical physics	 Microprocessor: This course explores the assembly language program codes and simple microprocessor programs Medical Physics: This course deals with the applications of electricity and magnetism in medicine, light in medicine, nuclear medicine, radiation protection

Criterion: II – Teaching-Learning and Evaluation

Metric : 2.6.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and

Course Outcomes (COs) – B.Sc. PHYSICS

		in medicine and computers in medicine
P6ME2/3	Opto electronics/energy physics	 Optoelectronics: Optoelectronics is a recent field. This course aims at giving an idea about fibre optics systems and communication. This course also deals with the LEDs and stimulated emission in intrinsic semiconductors, photo detectors and modulation methods. Energy Physics: This course covers the different sources of renewable energy sector and its applications.
P6SB5	Physics of measuring instruments - II	This course enable the students to learn the physics principles behind astronomical measurements, electron microscopes and X-ray diffraction measurements
P6SB6	Physics of medical instruments-II	This course enables the students to learn the working principles of medical instruments used in radiography and nuclear medicine.