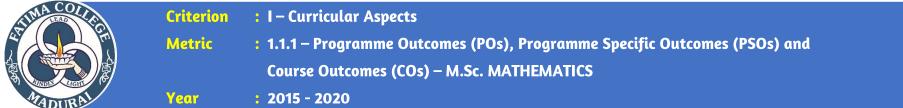
PROGRAMME CODE: PSMA

 Criterion : I - Curricular Aspects
 Metric : 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs) - M.Sc. MATHEMATICS
 Year : 2015 - 2020

FATIMA COLLEGE (AUTONOMOUS), MADURAI – 625018

NAME OF THE PROGRAMME: M. SC. MATHEMATICS


PROGRAMME OUTCOMES:

Students will be able to

- **PO1:** Apply acquired scientific knowledge to solve major and complex issues in the society/industry
- **PO2:** Attain research skills to solve complex cultural, societal and environmental issues
- **PO3:** Employ latest and updated tools and technologies to solve complex issues
- **PO4:** Demonstrate Professional Ethics that foster Community, Nation and Environment Building Initiatives.

PROGRAMME SPECIFIC OUTCOMES:

- **PSO 1:** Develop proficiency in the analysis of complex mathematical problems and the use of Mathematical or other appropriate techniques to solve them.
- **PSO 2:** Provide a systematic understanding of core mathematical concepts, principles and theories along with their applications.
- **PSO 3:** Demonstrate the ability to conduct Research independently and pursue higher studies towards the Ph. D degree in Mathematics and computing.

PSO 4: Understand the fundamental axioms in Mathematics and develop Mathematical ideas based on them.

PSO 5: Provide advanced knowledge on topics in Pure Mathematics, empowering the students to pursue higher studies.

2019 - 2020

Course Code	COURSE TITLE	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/ GLOBAL)	COURSE DESCRIPTION	Course Outcomes
19PG1M1	Algebra	Global	This course is designed to emphasis the study of Algebra.	 CO1: Recall various properties of algebraic structures and explain counting principle. CO2: Describe Sylow's theorems and solve problems CO3: Distinguish Integral Domain and Euclidean Rings CO4: Classify Rings. CO5: Describe basic concepts of Solvable

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

				groups
19PG1M2	Real Analysis	Global	This course provides a comprehensive idea about the principles of Real Analysis.	 CO1: Recall Sequence and series in Real line CO2: Differentiate Continuous functions and Uniformly continuous functions CO3: Describe Derivatives of functions CO4: Identify Riemann Integral and Riemann - Stieltjes Integral CO5: Explain Uniform convergence of functions
19PG1M3	Number Theory	National	This course discovers interesting and unexpected relationships between different sorts of numbers and to prove	 CO 1: Define and interpret the concepts of divisibility CO 2: Explain properties of congruences CO 3: Apply the Law of Quadratic Reciprocity

Year

2015 - 2020

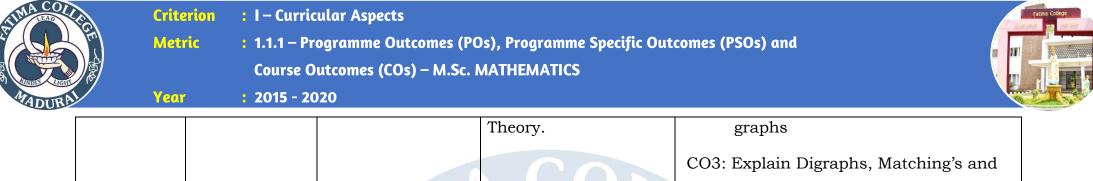
Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

(P					
				that these	CO 4: Classify functions of number
				relationships are true	theory
					CO 5: Solve Linear Diophantine equation
	19PG1M4	Classical Mechanics	National	This course provides a sound knowledge of the concepts and principles in mechanics	 CO 1 : Describe the behaviour of a particle, the system of particles and D'Alambert's principle. CO 2 : Solve problems using Lagrangian formulation CO 3 : Explain Hamilton's principle in Physical reality CO 4 : Construct Lagrange's equation for
				DIN LIGHT	non - holonomic system. CO 5 : Apply the laws of forces in central orbit to solve Kepler's problem
	19PG2M5	Advanced	Global	This course enables	CO1: Appraise characteristic roots of
		Algebra		the students to study some advanced	linear transformations CO2: Explain Matrices and Nilpotent

 Criterion
 : I - Curricular Aspects

 Metric
 : 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

 Year
 : 2015 - 2020


			concepts in Algebra.	transformation CO3: Classify transformations CO4: Describe various concepts of fields CO5: Analyse Galois theory
19PG1M6	Advanced Real Analysis	Global	This course enables the students to study some advanced concepts in Real Analysis.	At the end of the course, the students will be able to CO1: Identify Riemann Integral and Riemann - Stieltjes Integral CO2: Explain Uniform convergence of functions CO3: Define Power Series and Fourier Series CO4: Describe Linear Transformations CO5: Explain Implicit function theorem and Rank theorem
19PG2M7	Differential	Global	This course will	CO 1:Define Linear differential equations

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICSYear: 2015 - 2020

	. 2015 - 20	020		
	Equations		provide the	with constant coefficients and
			knowledge for solving	prove different theorems and
			of ordinary and	solve them .
			partial differential	CO 2: Solving problems of the n th order in
			equations in physical	differential equations with
			and other	variable coefficients.
			phenomena	CO 3: Identify Regular singular points and derive Bessel's Equation.
				CO 4: Explain the methods of solving problems in partial differential
	4			equations of first order.
		5		CO 5: Define and form Partial
		\bigcirc		differential equations of the
			DL1 LIGHT	second order and solve it.
19PG2M8	Graph Theory	Global	This course enables	CO1: Build the knowledge of Connectivity
			the students to study	in graphs
			some advanced	CO2: Identify Eulerian and Hamiltonian
			concepts in Graph	

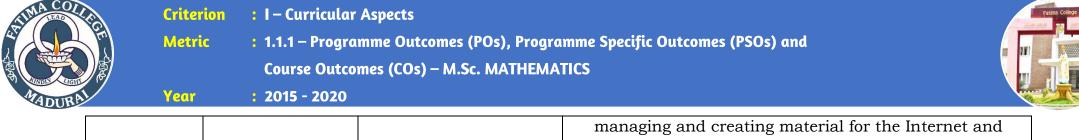
	600	CO3: Explain Digraphs, Matching's and
		Factorization in graphs
	LEAD	CO4: Describe Planarity and Coloring in graphs
		CO5: Define and Explain Domination in graphs

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE OBJECTIVES
PG3M9	TOPOLOGY	Global	• To generalize the concepts which the students have learnt in Real Analysis and to train the students to develop logical thinking.
PG3M10	FUNCTIONAL ANALYSIS	Global	• To study the three structure theorems of Functional Analysis viz., Banach theorem, open mapping theorem and uniform bounded ness principle, Hilbert spaces and operator theory leading to the spectral theory of

Year

Criterion : I – Curricular Aspects

: 2015 - 2020


			operators on a Hilbert spaces.
PG3M11	OPTIMIZATION TECHNIQUES	Global	• To make the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization.
PG3M12	COMBINATORICS	Global	• To introduce combinatorial techniques for solving enumeration problems.
ELECTIVE PG3ME1	Research Methodology	Global	• To enable the students to study the Research Methodology and some concepts of Measurability, L ^p Spaces, Fourier Transforms and Banach algebras.
PG3ME1	JAVA PROGRAMMING	Global	To develop OO Programming.To develop Multithreaded Programs.
PG4M13	COMPLEX ANALYSIS	Global	• To introduce the students to the world of complex variable theory which is markedly different from analysis of real variable.
PG4M14	STATISTICS	Global	• The objective of this course is to develop an ability in

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICSYear: 2015 - 2020

		INA (the students to apply statistical methods to real life problem, to understand the limitations of these methods, to think probabilistically and to understand the estimation theory and to test the hypothesis of different types.
PG4M15	METHODS OF APPLIED MATHEMATICS	Global	• To enable the students to know the concepts of Calculus of variations, Integral equations, Neumann series and Fourier transforms.
ELECTIVE PG4ME3	Formal Languages	Global	• The aim of this course is to enable the students to understand the basic ideas of Automata Theory. The course deals with the following concepts: Regular expressions, two way finite automata, context free grammar and Push down automata.
PG4ME4	Web Designing using HTML	Regional	 To enable the student To Design Web Pages To give introduction to the Internet To give an Exposure to resources and tools for using,

LEAD

		managing and creating material for the Internet and
		World-Wide Web.

2018 - 2019

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	Course Objectives
PG1M1	Algebra I	Global	To introduce various algebraic structures.To study the properties of these structures.
PG1M2	Real Analysis	Global	• To provide the students a comprehensive idea about the principles of Real Analysis. Real Analysis is the foundation of pure Mathematics and the idea of Real Analysis is used in Topology, Functional Analysis, Complex Analysis and Measure Theory.
PG1M3	Number Theory	Global	• The aim of this course is to help students to appreciate the elegant results in Number Theory.

Year

2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

· · · ·			
			Students will learn the concepts like Divisibility, Congruences, Quadratic Reciprocity, some functions and Diophantine equations of Number Theory.
PG1M4	Mechanics	Global	• The aim of the course is to help the students to understand mechanics of a particle, Lagrange's equations, Hamilton's principles, Two body problem and Kepler's problem.
PGMEDC	Optimization Methods	National	• This course helps the students to convert real life problems into mathematical models and solve them using various techniques. Also they will learn Transportation Assignment Problems, Sequencing Problem , Network Scheduling by PERT/CPM, Game Theory, Permutation and Combination.
PG2M5	Algebra Ii	Global	• This Course introduces students to the third algebraic model, field theory, algebra of linear transformation and various types of operators.
PG2M6	Measure And	Global	• To provide the students a comprehensive idea about

Year

: 2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

	Integration	MAC	the measures on the real line, Integration of Functions of a real variable, Extension of Riemann integration, Abstract Measure Spaces, Signed Measures and their derivatives, Measure and Integration in a Product space.
PG2M7	Differential Equations	Global	 To give an in-depth knowledge of solving differential equations which is frequently used in Physics, Chemistry, Biology, Economics and Mechanics.
PG2M8	Graph Theory	Global	• The aim of the course is to introduce to the students Graph Theory as an important branch of Mathematics and to motivate them to appreciate the applications of Graph Theory in various fields such as Chemistry, Physics, Operations Research, Sociology and Computer Sciences and Electrical Engineering etc.
PG3M9	Topology	Global	• To generalize the concepts which the students have learnt in Real Analysis and to train the students to

Criterion : I – Curricular Aspects

Metric : 1.1.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs) – M.Sc. MATHEMATICS

Year : 2015 - 2020

			develop logical thinking.
PG3M10	Functional Analysis	Global	• To study the three structure theorems of Functional Analysis viz., Banach theorem, open mapping theorem and uniform bounded ness principle, Hilbert spaces and operator theory leading to the spectral theory of operators on a Hilbert spaces.
PG3M11	Optimization Techniques	Global	• To make the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization.
PG3M12	Combinatorics	Global	• To introduce combinatorial techniques for solving enumeration problems.
ELECTIVE PG3ME1	Research Methodology	Global	 To enable the students to study the Research Methodology and some concepts of Measurability, L^p Spaces, Fourier Transforms and Banach algebras.
PG3ME1	Java	Global	To develop OO Programming.

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

	Programming		To develop Multithreaded Programs.
PG4M13	Complex Analysis	Global	• To introduce the students to the world of complex variable theory which is markedly different from analysis of real variable.
PG4M14	Statistics	Global	• The objective of this course is to develop an ability in the students to apply statistical methods to real life problem, to understand the limitations of these methods, to think probabilistically and to understand the estimation theory and to test the hypothesis of different types.
PG4M15	Methods Of Applied Mathematics	Global	• To enable the students to know the concepts of Calculus of variations, Integral equations, Neumann series and Fourier transforms.
ELECTIVE		Global	• The aim of this course is to enable the students to
PG4ME3	Formal Languages	AD	understand the basic ideas of Automata Theory. The course deals with the following concepts: Regular expressions, two way finite automata, context free

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

			grammar and Push down automata.
PG4ME4	Web Designing	Regional	• To enable the student
	Using Html	NA	• To Design Web Pages
		LE	• To give introduction to the Internet
			• To give an Exposure to resources and tools for using,
			managing and creating material for the Internet and
			World-Wide Web.

2017 - 2018

Year

: 2015 - 2020

COURSE CODE	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE OBJECTIVES
PG1M1	Algebra I	Global	To introduce various algebraic structures.To study the properties of these structures.
PG1M2	Real Analysis	Global	• To provide the students a comprehensive idea about the principles of Real Analysis. Real Analysis is the

Criterion : I – Curricular Aspects Metric : 1.1.1 – Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and **Course Outcomes (COs) – M.Sc. MATHEMATICS**

Al Yea	r : 2015 - 2020		
		A C	foundation of pure Mathematics and the idea of Real Analysis is used in Topology, Functional Analysis, Complex Analysis and Measure Theory.
PG1M3	Number Theory	Global	• The aim of this course is to help students to appreciate the elegant results in Number Theory. Students will learn the concepts like Divisibility, Congruencies, Quadratic Reciprocity, some functions and Diophantine equations of Number Theory.
PG1M4	Mechanics	Global	• The aim of the course is to help the students to understand mechanics of a particle, Lagrange's equations, Hamilton's principles, Two body problem and Kepler's problem.
PGMEDC	Optimization Methods	Global	• This course helps the students to convert real life problems into mathematical models and solve them using various techniques. Also they will learn Transportation Assignment Problems, Sequencing Problem , Network Scheduling by PERT/CPM, Game

Criterion : I – Curricular Aspects

Ye	ar : 2015 - 2020		
			Theory, Permutation and Combination.
PG2M5	Algebra II	Global	• This Course introduces students to the third algebraic model, field theory, algebra of linear transformation and various types of operators.
PG2M6	Measure and Integration	Global	• To provide the students a comprehensive idea about the measures on the real line, Integration of Functions of a real variable, Extension of Riemann integration, Abstract Measure Spaces, Signed Measures and their derivatives, Measure and Integration in a Product space.
PG2M7	Differential Equations	Global	 To give an in-depth knowledge of solving differential equations which is frequently used in Physics, Chemistry, Biology, Economics and Mechanics.
PG2M8	Graph Theory	Global	• The aim of the course is to introduce to the students Graph Theory as an important branch of Mathematics and to motivate them to appreciate the

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICSYear: 2015 - 2020

		NAC	applications of Graph Theory in various fields such as Chemistry, Physics, Operations Research, Sociology and Computer Sciences and Electrical Engineering etc.
PG3M9	Topology	Global	• To generalize the concepts which the students have learnt in Real Analysis and to train the students to develop logical thinking.
PG3M10	Functional Analysis	Global	• To study the three structure theorems of Functional Analysis viz., Banach theorem, open mapping theorem and uniform bounded ness principle, Hilbert spaces and operator theory leading to the spectral theory of operators on a Hilbert spaces.
PG3M11	Optimization Techniques	Global	• To make the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization
PG3M12	Combinatorics	Global	• To introduce combinatorial techniques for solving

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

			enumeration problems.
ELECTIVE PG3ME1	Research Methodology	Global	 To enable the students to study the Research Methodology and some concepts of Measurability, L^p Spaces, Fourier Transforms and Banach algebras.
PG3ME2	JAVA Programming	Global	To develop OO Programming.To develop Multithreaded Programs.
PG4M13	Complex Analysis	Global	• To introduce the students to the world of complex variable theory this is markedly different from analysis of real variable.
PG4M14	Statistics	Global	• The objective of this course is to develop an ability in the students to apply statistical methods to real life problem, to understand the limitations of these methods, to think probabilistically and to understand the estimation theory and to test the hypothesis of different types.
PG4M15	Methods of	Global	• To enable the students to know the concepts of

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

	Applied		Calculus of variations, Integral equations, Neumann
	Mathematics		series and Fourier transforms.
ELECTIVE	Formal	Global	• The aim of this course is to enable the students to
PG4ME3	Languages	LEA	understand the basic ideas of Automata Theory. The
			course deals with the following concepts: Regular
			expressions, two way finite automata, context free
			grammar and Push down automata.
PG4ME4	Web Designing	Regional	• To enable the student
	using HTML		• To Design Web Pages
	5		• To give introduction to the Internet
			• To give an Exposure to resources and tools for using,
			managing and creating material for the Internet and
			World-Wide Web.
			LICH A

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICSYear: 2015 - 2020

2016 - 2017

Course Code	COURSE TITLE	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE OBJECTIVES
PG1M1	Algebra I	Global	To introduce various algebraic structures.To study the properties of these structures.
PG1M2	Real Analysis	Global	• To provide the students a comprehensive idea about the principles of Real Analysis. Real Analysis is the foundation of pure Mathematics and the idea of Real Analysis is used in Topology, Functional Analysis, Complex Analysis and Measure Theory.
PG1M3	Number Theory	Global	 The aim of this course is to help students to appreciate the elegant results in Number Theory. Students will learn the concepts like Divisibility, Congruences, Quadratic Reciprocity, some functions and Diophantine equations of Number Theory.

Year

: 2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

PG1M4	Mechanics	Global	• The aim of the course is to help the students to understand mechanics of a particle, Lagrange's equations, Hamilton's principles, Two body problem and Kepler's problem.
PGMEDC	Optimization Methods	Global	• This course helps the students to convert real life problems into mathematical models and solve them using various techniques. Also they will learn Transportation Assignment Problems, Sequencing Problem , Network Scheduling by PERT/CPM, Game Theory, Permutation and Combination.
PG2M5	Algebra II	Global	• This Course introduces students to the third algebraic model, field theory, algebra of linear transformation and various types of operators.
PG2M6	Measure and Integration	Global	 To provide the students a comprehensive idea about the measures on the real line, Integration of Functions of a real variable, Extension of Riemann integration, Abstract Measure Spaces, Signed Measures and their

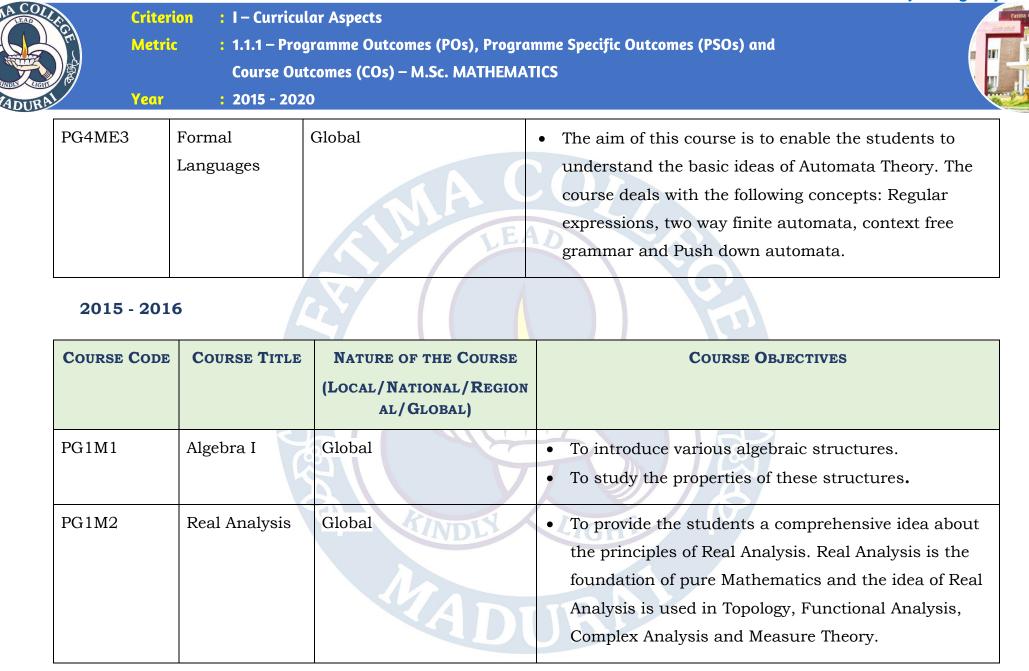
Criterion : I – Curricular Aspects

RA	Year	: 2015 - 202	20	
				derivatives, Measure and Integration in a Product space .
	PG2M7	Differential Equations	Global	• To give an in-depth knowledge of solving differential equations this is frequently used in Physics, Chemistry, Biology, Economics and Mechanics.
	PG2M8	Graph Theory	Global	• The aim of the course is to introduce to the students Graph Theory as an important branch of Mathematics and to motivate them to appreciate the applications of Graph Theory in various fields such as Chemistry, Physics, Operations Research, Sociology and Computer Sciences and Electrical Engineering etc.
	PG3M9	Topology	Global	• To generalize the concepts which the students have learnt in Real Analysis and to train the students to develop logical thinking.
	PG3M10	Functional Analysis	Global	• To study the three structure theorems of Functional Analysis viz., Banach theorem, open mapping theorem and uniform bounded ness principle, Hilbert

Year

: 2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS


			spaces and operator theory leading to the spectral theory of operators on a Hilbert spaces.
PG3M11	Optimization Techniques	Global	• To make the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization.
PG3M12	Combinatorics	Global	• To introduce combinatorial techniques for solving enumeration problems.
PG3ME1	JAVA Programming	Global	• To develop OO Programming. To develop Multithreaded Programs.
PG4M13	Complex Analysis	Global	• To introduce the students to the world of complex variable theory this is markedly different from analysis of real variable.
PG4M14	Statistics	Global	• The objective of this course is to develop an ability in the students to apply statistical methods to real life problem, to understand the limitations of these

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICSYear: 2015 - 2020

		A C	methods, to think probabilistically and to understand the estimation theory and to test the hypothesis of different types.
PG4M15	Methods of Applied Mathematics	Global	• To enable the students to know the concepts of Calculus of variations, Integral equations, Neumann series and Fourier transforms.
ELECTIVE PG4ME1	Fuzzy sets and Applications	Global	• The aim of this course is to enable the students to understand the basic ideas of Fuzzy Sets. The course deals with the following concepts: crisp set and Fuzzy set, operations on Fuzzy sets, Fuzzy relations, Fuzzy measures and its applications
PG4ME2	Web Designing using HTML & JAVA Script	Global	 To enable the student To Design Web Pages To give introduction to the Internet To give an Exposure to resources and tools for using, managing and creating material for the Internet and World-Wide Web.

Year

: 2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. MATHEMATICS

PG1M3	Number Theory	Global	• The aim of this course is to help students to appreciate the elegant results in Number Theory. Students will learn the concepts like Divisibility, Congruences, Quadratic Reciprocity, some functions and Diophantine equations of Number Theory.
PG1M4	Mechanics	Global	• The aim of the course is to help the students to understand mechanics of a particle, Lagrange's equations, Hamilton's principles, Two body problem and Kepler's problem.
PGMEDC	Optimization Methods	Global	• This course helps the students to convert real life problems into mathematical models and solve them using various techniques. Also they will learn Transportation Assignment Problems, Sequencing Problem , Network Scheduling by PERT/CPM, Game Theory, Permutation and Combination.
PG2M5	Algebra II	Global	• This Course introduces students to the third algebraic model, field theory, algebra of linear

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

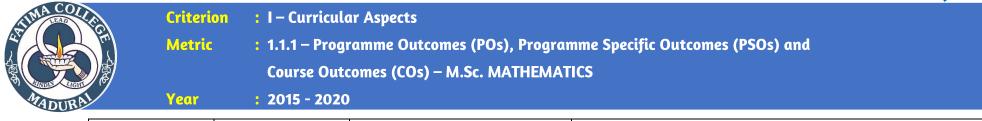
			transformation and various types of operators.
PG2M6	Measure and Integration	Global	• To provide the students a comprehensive idea about the measures on the real line, Integration of Functions of a real variable, Extension of Riemann integration, Abstract Measure Spaces, Signed Measures and their derivatives, Measure and Integration in a Product space
PG2M7	Differential Equations	Global	• To give an in-depth knowledge of solving differential equations this is frequently used in Physics, Chemistry, Biology, Economics and Mechanics.
PG2M8	Graph Theory	Global	 The aim of the course is to introduce to the students Graph Theory as an important branch of Mathematics and to motivate them to appreciate the applications of Graph Theory in various fields such as Chemistry, Physics, Operations Research, Sociology and Computer Sciences and Electrical Engineering etc.

Year

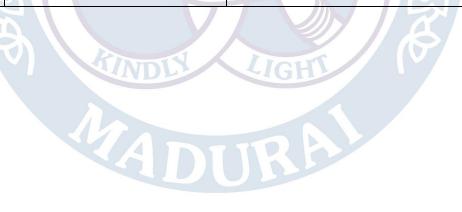
Criterion : I – Curricular Aspects

: 2015 - 2020

PG3M9	Topology	Global	• To generalize the concepts which the students have learnt in Real Analysis and to train the students to develop logical thinking.
PG3M10	Functional Analysis	Global	• To study the three structure theorems of Functional Analysis viz., Banach theorem, open mapping theorem and uniform boundedness principle, Hilbert spaces and operator theory leading to the spectral theory of operators on a Hilbert spaces.
PG3M11	Optimization Techniques	Global	• To make the students to become aware of and appreciate the potential of the theory of optimization and to introduce various decision making tools and techniques based on optimization.
PG3M12	Combinatorics	Global	• To introduce combinatorial techniques for solving enumeration problems.
PG3ME1	JAVA Programming	Global	To develop OO Programming.To develop Multithreaded Programs.


Year

Criterion : I – Curricular Aspects


: 2015 - 2020

PG4M13	Complex Analysis	Global	• To introduce the students to the world of complex variable theory this is markedly different from analysis of real variable.
PG4M14	Statistics	Global	• The objective of this course is to develop an ability in the students to apply statistical methods to real life problem, to understand the limitations of these methods, to think probabilistically and to understand the estimation theory and to test the hypothesis of different types.
PG4M15	Methods of Applied Mathematics	Global	• To enable the students to know the concepts of Calculus of variations, Integral equations, Neumann series and Fourier transforms.
ELECTIVE PG4ME1	Fuzzy sets and Applications	Global	• The aim of this course is to enable the students to understand the basic ideas of Fuzzy Sets. The course deals with the following concepts: crisp set and Fuzzy set, operations on Fuzzy sets, Fuzzy relations, Fuzzy measures and its applications

PG4ME2	Web Designing	Regional	• To enable the student
	using HTML &		To Design Web Pages
	JAVA Script		To give introduction to the Internet
		FA	• To give an Exposure to resources and tools for using,
			managing and creating material for the Internet and
			World-Wide Web.
PG4ME3	Formal	Global	
PG4ME5	Format	Global	• The aim of this course is to enable the students to
	Languages		understand the basic ideas of Automata Theory. The
			course deals with the following concepts: Regular
			expressions, two way finite automata, context free
			grammar and Push down automata.

