

 Criterion : I - Curricular Aspects
 Metric : 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs) - M.Sc. PHYSICS
 Year : 2015 - 2020

FATIMA COLLEGE (AUTONOMOUS), MADURAI – 625018

NAME OF THE PROGRAMME: M. SC. PHYSICS

PROGRAMME CODE: PSPH

PROGRAMME OUTCOMES:

Students will be able to

- **PO1:** Apply acquired scientific knowledge to solve major and complex issues in the society/industry
- **PO2:** Attain research skills to solve complex cultural, societal and environmental issues
- **PO3:** Employ latest and updated tools and technologies to solve complex issues
- **PO4:** Demonstrate Professional Ethics that foster Community, Nation and Environment Building Initiatives.

PROGRAMME SPECIFIC OUTCOMES:

Students will

PSO1: Acquire thorough knowledge of the basic concepts of the frontier areas of Physics comprising Mathematical Physics, Electromagnetic theory, Classical Mechanics, Quantum Mechanics, Condensed Matter Physics, Nuclear Physics, Numerical Methods, Communication systems, Molecular Spectroscopy, Material Science and Advanced Quantum Mechanics.

PSO2: Understand and solve the physics problems in everyday life using the acquired basic knowledge.

PSO3: Develop skills to perform experiments based on the theoretical understanding

PSO4: Apply the knowledge acquired to analyse and design models in the versatile realm of physics

PSO5: Equip with the essential foundations for higher education and research in physics.

2019 - 2020

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/ NATIONAL/ REGIONAL/ GLOBAL)	COURSE DESCRIPTION		Course Outcomes
19PG1P1	Introduction To	National	This course	CO 1 :	Define and deduce gauss
	Mathematical		emphasises the basic		divergence and stokes theorem
	Physics		concepts and		and solving problems on gauss
			applications of		divergence and stokes theorem
		Λ_{σ}	Mathematical Physics	CO 2 :	Discuss orthogonal curvilinear
			which involves vectors,		coordinates and spherical polar
			matrices, integral		coordinates and solving problems
			transforms and special		

-						
F				functions		using these coordinates
				C 0 1	CO 3 :	Explain special type of matrices
				AUU		and its Eigen value problems and
				EAD		illustrate the properties of
				LLAD		Fourier and Laplace transforms
					CO 4 :	Define Beta and Gamma
						Functions and find its relations
	19PG1P2	Applied	National	This cou <mark>rs</mark> e aims to	CO 1 :	Students will be able to
		Electronics		introdu <mark>ce</mark> applied		distinguish between BJT and FET
				electronics to students,	CO 2 :	Students will be able to explain
			2	encompassing the		the fundamental concepts of
				concepts of	<i>y</i> //	diode, BJT and transistor biasing
				semiconductor diode		to understand the small signal
			AIV	characteristics, Op-		behaviour of FET for amplification
				Amp characteristics,		applications
				registers , counters,	CO 3 :	Students will be able to Outline
				and analog to digital		the basics of linear and non linear
				conversion techniques.		systems

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

the Eigen values and Eigen

	2013 2020				
			LEAD DIN LIGHT	CO 4 : CO 5 : b) To ou	functions of a particle in a square potential well; To discuss the problem of barrier penetration. To solve the problem of Simple harmonic oscillator by Schrodinger's method and also by abstract operator method. a) To compare Schrodinger's notation with Dirac notation and to discuss the representation of state vectors and operators. Uline the matrix representation of orbital and spin angular moment and to calculate Clebsch - Gordon coefficients.
19PG2P8	Electromagnetic	National	The purpose of this	CO 1 :	Gain insight about the electric
	Theory		course is to provide the		field and their charge distribution
			methods to analyse		at various condition such as in

Year

2015 - 2020

Criterion: I - Curricular AspectsMetric: 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. PHYSICS

and understand the static and moving fields static electric field, the CO 2 : Cultivate knowledge in dealing static magnetic field, with the static electric field in and electromagnetic dielectric media and their wave propagation. The elaborated parameter study. course provides a basic CO 3 : Develop thorough knowledge of knowledge of static and moving magnetic fields fundamental principles of steady current and charged behind **Electromagnetic** particles. Theories and Detailed understanding of time CO 4 : Phenomena. dependent electric and magnetic fields and their wave propagation properties. Acquire essential knowledge in CO 5 : circuitry in transmission lines and wave guides and a detailed study about antenna.

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE DESCRIPTION
PG3P11	Solid State Physics-1	National	• The purpose of this course is to provide a sound foundation in condensed matter physics especially in Crystallography, X-ray diffraction, Phonons, Free electron Fermi gas, Energy bands, Semiconductor crystals and Fermi surfaces.
PG3P12	Numerical methods & Programming in C++	National	• The objective of this course is to enable the students to learn the various numerical methods to solve algebraic & transcendental equations and also numerical differentiation and integration. Also it provides object oriented techniques to write programs in C++ especially for all the numerical methods
PG3P13	Nuclear and Particle Physics	National	• The aim of this course is to provide an overview of the fields of nuclear and particle physics.
PG3PE1A/B	Communication	National	• The aim of this course is to provide a sound

Year

Criterion : I – Curricular Aspects

2015 - 2020

	Systems/Microcont roller 8051		foundation in communication systems.
PG4P14	Solid State Physics II	National	• This course deals with Plasmons, Polaritons, Polarons, Excitons, Superconductivity, Dielectrics and Ferroelectrics, Diamagnetism and Paramagnetism, Ferromagnetism and Antiferro magnetism.
PG4P15	Molecular Spectroscopy	National	• The aim of this course is to introduce the methods employed in molecular spectroscopy and the application of spectroscopy.
PG4P16	Advanced Quantum Mechanics	National	• This course deals with the approximation methods for stationary states, evolution of time concepts, scattering theory and relativistic quantum mechanics.
PG4PE2A/B	Materials Science/ AstroPhysics	National	• Materials science occupies the centre of the innovative research area. This course deals with the various crystal growth techniques, characterization methods, thin films, nano

LEAD

2018 - 2019

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE DESCRIPTION
PG1P1	Mathematical Physics	National	• The aim of this course is to provide the mathematical foundation in vectors, matrices, special functions and Fourier and Laplace transforms required for the description of the physical phenomena.
PG1P2	Applied Electronics	National	• This course aims to understand the concepts of Applied Electronics and their applications
PG1P3	Classical Mechanics	National	This course imparts a thorough knowledge of

		MA C	Mechanics of single particle and a system of particles, applying various classical theories. This would help them to analyse any system using classical mechanics.
PG1P4	Electromagnetic Theory	National	• The purpose of this course is to provide the methods to analyse and understand the static electric field, the static magnetic field, and electromagnetic wave propagation.
PG2P5	Mathematical Physics II	National	• This course aims at the introduction of advanced mathematical tools such as complex variables, group theory and tensor analysis.
PG2P6	Microprocessor & Microcontroller	National	• This paper aims at providing the students with an exposure to the popular microprocessor Intel 8086
PG2P7	Quantum Mechanics	National	• This course introduces Schrodinger equation, general formalism of quantum mechanics, representations and angular momentum.

Year

Criterion : I - Curricular Aspects Metric : 1.1.1 - Programme Outcomes (POs), Programm

: 2015 - 2020

PG2P8	Modern Optics	National	• This course aims at introducing interference, optics of solids, and principle of fibre optic communication and Fourier techniques in optics
PG3P11	Solid State Physics-1	National	• The purpose of this course is to provide a sound foundation in condensed matter physics especially in Crystallography, X-ray diffraction, Phonons, Free electron Fermi gas, Energy bands, Semiconductor crystals and Fermi surfaces.
PG3P12	Numerical methods & Programming in C++	National	• The objective of this course is to enable the students to learn the various numerical methods to solve algebraic & transcendental equations and also numerical differentiation and integration. Also it provides object oriented techniques to write programs in C++ especially for all the numerical methods
PG3P13	Nuclear and Particle Physics	National	• The aim of this course is to provide an overview of the fields of nuclear and particle physics.

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

PG3PE1A/B	Communication Systems/Microcont roller 8051	National	• The aim of this course is to provide a sound foundation in communication systems.
PG4P14	Solid State Physics II	National	• This course deals with Plasmons, Polaritons, Polarons, Excitons, Superconductivity, Dielectrics and Ferroelectrics, Diamagnetism and Paramagnetism, Ferromagnetism and Antiferro magnetism.
PG4P15	Molecular Spectroscopy	National	• The aim of this course is to introduce the methods employed in molecular spectroscopy and the application of spectroscopy.
PG4P16	Advanced Quantum Mechanics	National	• This course deals with the approximation methods for stationary states, evolution of time concepts, scattering theory and relativistic quantum mechanics.
PG4PE2A/B	Materials Science/Astro Physics	National	• Materials science occupies the centre of the innovative research area. This course deals with the various crystal growth techniques,

LEAD

polymers and ceramics and glass.

2017 - 2018

COURSE CODE	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE DESCRIPTION
PG1P1	Mathematical Physics	National	• The aim of this course is to provide the mathematical foundation in vectors, matrices, special functions and Fourier and Laplace transforms required for the description of the physical phenomena.
PG1P2	Applied Electronics	National	• This course aims to understand the concepts of Applied Electronics and their applications
PG1P3	Classical Mechanics	National	• This course imparts a thorough knowledge of Mechanics of single particle and a system of particles, applying various classical theories. This

Year

: 2015 - 2020

			would help them to analyse any system using classical mechanics.
PG1P4	Electromagnetic Theory	National	• The purpose of this course is to provide the methods to analyse and understand the static electric field, the static magnetic field, and electromagnetic wave propagation.
PG2P5	Mathematical Physics II	National	• This course aims at the introduction of advanced mathematical tools such as complex variables, group theory and tensor analysis.
PG2P6	Microprocessor & Microcontroller	National	• This paper aims at providing the students with an exposure to the popular microprocessor Intel 8086
PG2P7	Quantum Mechanics	National	• This course introduces Schrodinger equation, general formalism of quantum mechanics, representations and angular momentum.
PG2P8	Modern Optics	National	• This course aims at introducing interference,

Year

Criterion : I – Curricular Aspects

2015 - 2020

			optics of solids, and principle of fibre optic communication and Fourier techniques in optics
PG3P11	Solid State Physics-1	National	• The purpose of this course is to provide a sound foundation in condensed matter physics especially in Crystallography, X-ray diffraction, Phonons, Free electron Fermi gas, Energy bands, Semiconductor crystals and Fermi surfaces.
PG3P12	Numerical methods & Programming in C++	National	• The objective of this course is to enable the students to learn the various numerical methods to solve algebraic & transcendental equations and also numerical differentiation and integration. Also it provides object oriented techniques to write programs in C++ especially for all the numerical methods
PG3P13	Nuclear and Particle Physics	National	• The aim of this course is to provide an overview of the fields of nuclear and particle physics.
PG3PE1A/B	Communication	National	• The aim of this course is to provide a sound

Year

: 2015 - 2020

	Systems/Microcon troller 8051		foundation in communication systems.
PG4P14	Solid State Physics II	National	• This course deals with Plasmons, Polaritons, Polarons, Excitons, Superconductivity, Dielectrics and Ferroelectrics, Diamagnetism and Paramagnetism, Ferromagnetism and Antiferro magnetism.
PG4P15	Molecular Spectroscopy	National	• The aim of this course is to introduce the methods employed in molecular spectroscopy and the application of spectroscopy.
PG4P16	Advanced Quantum Mechanics	National	• This course deals with the approximation methods for stationary states, evolution of time concepts, scattering theory and relativistic quantum mechanics.
PG4PE2A/B	Materials Science/Astro Physics	National	• Materials science occupies the centre of the innovative research area. This course deals with the various crystal growth techniques,

LEAD

polymers and ceramics and glass.

2016 - 2017

Course Code	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE DESCRIPTION
PG1P1	Mathematical Physics	National	• The aim of this course is to provide the mathematical foundation in vectors, matrices, special functions and Fourier and Laplace transforms required for the description of the physical phenomena.
PG1P2	Analog Electronics	National	• This course aims to understand the concepts of Applied Electronics and their applications
PG1P3	Classical Mechanics	National	• This course imparts a thorough knowledge of Mechanics of single particle and a system of

		SA C	particles, applying various classical theories. This would help them to analyse any system using classical mechanics.
PG1P4	Electromagnetic Theory	National	• The purpose of this course is to provide the methods to analyse and understand the static electric field, the static magnetic field, and electromagnetic wave propagation.
PG2P5	Mathematical Physics II	National	• This course aims at the introduction of advanced mathematical tools such as complex variables, group theory and tensor analysis.
PG2P6	Microprocessor & Microcontroller	National	• This paper aims at providing the students with an exposure to the popular microprocessor Intel 8086
PG2P7	Quantum Mechanics	National	• This course introduces Schrodinger equation, general formalism of quantum mechanics, representations and angular momentum.

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

PG2P8	Modern Optics	National	• This course aims at introducing interference, optics of solids, and principle of fibre optic communication and Fourier techniques in optics
PG3P11	Solid State Physics-1	National	• The purpose of this course is to provide a sound foundation in condensed matter physics especially in Crystallography, X-ray diffraction, Phonons, Free electron Fermi gas, Energy bands, Semiconductor crystals and Fermi surfaces.
PG3P12	Numerical methods & Programming in C++	National	• The objective of this course is to enable the students to learn the various numerical methods to solve algebraic & transcendental equations and also numerical differentiation and integration. Also it provides object oriented techniques to write programs in C++ especially for all the numerical methods
PG3P13	Nuclear and Particle Physics	National	• The aim of this course is to provide an overview of the fields of nuclear and particle physics.

PG3PE1A/B	Communication	National	• The aim of this course is to provide a sound
	Systems/Microcon		foundation in communication systems.
	troller 8051	NA C	
PG4P14	Solid State Physics	National	• This course deals with Plasmons, Polaritons,
	П		Polarons, Excitons, Superconductivity, Dielectrics
			and Ferroelectrics, Diamagnetism and
			Paramagnetism, Ferromagnetism and Anti
			ferromagnetism.
PG4P15	Molecular	National	• The aim of this course is to introduce the
	Spectroscopy		methods employed in molecular spectroscopy and
	(A)		the application of spectroscopy.
PG4P16	Advanced	National	• This course deals with the approximation
	Quantum	AINDLY	methods for stationary states, evolution of time
	Mechanics		concepts, scattering theory and relativistic
			quantum mechanics.
PG4PE2A/B	Materials	National	• Materials science occupies the centre of the
	Science/AstroPhys		innovative research area. This course deals with

materials and other types of materials such as polymers and ceramics and glass.

2015 - 2016

COURSE CODE	Course Title	NATURE OF THE COURSE (LOCAL/NATIONAL/ REGIONAL/GLOBAL)	COURSE DESCRIPTION
PG1P1	Mathematical Physics	National	• The aim of this course is to provide the mathematical foundation in vectors, matrices, special functions and Fourier and Laplace transforms required for the description of the physical phenomena.
PG1P2	Analog Electronics	National	• This course aims to understand the concepts of Applied Electronics and their applications
PG1P3	Classical	National	• This course imparts a thorough knowledge of Mechanics of single particle and a system of

	Mechanics	SKA C	particles, applying various classical theories. This would help them to analyse any system using classical mechanics.
PG1P4	Electromagnetic Theory	National	• The purpose of this course is to provide the methods to analyse and understand the static electric field, the static magnetic field, and electromagnetic wave propagation.
PG2P5	Mathematical Physics II	National	• This course aims at the introduction of advanced mathematical tools such as complex variables, group theory and tensor analysis.
PG2P6	Advanced Microprocessors	National	• This paper aims at providing the students with an exposure to the popular microprocessor Intel 8086
PG2P7	Quantum Mechanics	National	• This course introduces Schrodinger equation, general formalism of quantum mechanics, representations and angular momentum.

Year

Criterion : I – Curricular Aspects

: 2015 - 2020

PG2P8	Modern Optics	National	• This course aims at introducing interference, optics of solids, and principle of fiber optic communication and Fourier techniques in optics
PG3P11	Solid State Physics-1	National	• The purpose of this course is to provide a sound foundation in condensed matter physics especially in Crystallography, X-ray diffraction, Phonons, Free electron Fermi gas, Energy bands, Semiconductor crystals and Fermi surfaces.
PG3P12	Numerical methods & Programming in C++	National	• The objective of this course is to enable the students to learn the various numerical methods to solve algebraic & transcendental equations and also numerical differentiation and integration. Also it provides object oriented techniques to write programs in C++ especially for all the numerical methods
PG3P13	Nuclear and Particle Physics	National DI	• The aim of this course is to provide an overview of the fields of nuclear and particle physics.

PG3PE1A/B	Communication Systems/Microcon troller 8051	National	• The aim of this course is to provide a sound foundation in communication systems.
PG4P14	Solid State Physics II	National	• This course deals with Plasmons, Polaritons, Polarons, Excitons, Superconductivity, Dielectrics and Ferroelectrics, Diamagnetism and Paramagnetism, Ferromagnetism and Anti ferromagnetism.
PG4P15	Molecular Spectroscopy	National	• The aim of this course is to introduce the methods employed in molecular spectroscopy and the application of spectroscopy.
PG4P16	Advanced Quantum Mechanics	National	• This course deals with the approximation methods for stationary states, evolution of time concepts, scattering theory and relativistic quantum mechanics.
PG4PE2A/B	Materials Science/ AstroPhysics	National	• Materials science occupies the centre of the innovative research area. This course deals with

 Criterion
 : I - Curricular Aspects

 Metric
 : 1.1.1 - Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and
Course Outcomes (COs) - M.Sc. PHYSICS

 Year
 : 2015 - 2020

the various crystal growth techniques, characterization methods, thin films, nano materials and other types of materials such as polymers and ceramics and glass.

