FATIMA COLLEGE (AUTONOMOUS) Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV) Maryland, Madurai- 625 018, Tamil Nadu, India NAME OF THE DEPARTMENT: CHEMISTRY NAME OF THE PROGRAMME: B.Sc. CHEMISTRY PROGRAMME CODE : UACH ACADEMIC YEAR : 2023-2024 # Fatima Collège (Autonomous) Madurai -18 The Minutes of the Board of Studies Department of Chemistry (To be implemented from 2023-2024 onwards) Convered on 3. H. 2023 Convered at 2p.m. Venue: R3 Members Present | (2000 100) | | |---|---| | 5.NO. Name | Designation | | 1. Dr. B. Medona, Heade Alsociate
Professor, Dept of Chemistry & Tedone
3/4/23. | Head of the
Department | | 2. Dr. P. Suresh, Assistant Professor Depontment of Natural Products Chemis School of Chemistry, Madurai Karnaray University, Modurai D. Coenty | Voiversity
Nominee. | | 3. Dr. N. Manimaran Associate Professor Department of Chemistry, Bharathishalan University, Trichy Ntomo 3/4/23 | Subject Expert.
(Other than Parent.
University) | | 4. Dr. A. Mary Imelda Jayaseeli, Head & Associate Professor, Jayanay Annapackiam College for Women. Peniyakulan. MA Dio 41/2023 | Subject Expert | | | 1 | S. Manikardan, Senier Researce | Industrialist _ | |----------|----------------|--|--| | | 5 | S. Mankara, Plana, Plana | | | | 1000 | S. Marikardan, Ser
Associate, Par Pharma, Pl.D. | The state of s | | | | Department, Changalpattu | | | adini. | | 120 | | | The same | | Ms. B. Shabana, Research
Department, | | | | 6 | M& B. Shabana, pepartment, | Alumna | | | | 0 1 -1 -1 -1 | - | | | | of indevalan contes | - | | | | 18 X WBan | | | | | (03/04/2023) | Pan 314/2023 | | 1 | 20078 | or A Rajeswari, Assistant | Dear of Academic | | | | Professor Dept. of chemistry | Affairs. | | 1000 | 100 300 | fatima College | 1000 | | 3-0 | 113.00 | and the seasons of Depters of the seasons | | | | | 1681918 | | | | 2/3/3 | Staff Members | I WOOD TO | | | 300 | the same of the same of the same | DAMES OF THE PARTY | | The same | | Dr. S. Sukumari | 5u_s | | | | Dr-B Vinosha | Bujodus | | | | Dr. B. Suganthana | 7. hur | | | | Dr J. Arul mary | gr. moning | | Land St. | 9,445 | Dr. V. Arul Deepa | V. Aller | | | 13 100 | or M. Priyadhardani | De. Priy-de | | | Salary Comment | Dr. K.R. Subimol | | | | | | man | | | | Dr. J. Belinda Asha | J. Belinda Ashe | | 2000 | | Dr. J. Jone Celestina | For N. Vinala Lundon | | | | Charles Addition to the Control of t | | | | | trought the strong about a | | | | 1) | Samuel of Control of Control | | Minutes of the Board of Studies: UGI 1. Presentation of the Aztion Taken Report | | Commo
None | n S | ugg | estion | | 10 | 0 | - | - | - | - | | | | | | | | |-----------------------|--|--------------------------------|-------------------------|-------------------------------|--------|----------------------|---------------|--------
--|------|-------|------------------------------|-------|-----|-------|-------|------|-----| | | | | 00 | | 0,0 | Hen | عط | in | the pr | revi | au. | A.L. | | | | | | | | 1. | Non. | | | | - | - | | | B | cond | | D | | a | hear | 4 | or ' | 10 | | | | | | TEV V D | for | | Son | E | xan | 1. | | | | -6 | frech | 1 20 | 122. | -20 | | | Self | Leo | in | a Co | unse | 0 | | | | Gor | 1 | 15 pe | th | _ | Su | 99 | 21+ | 0 | | | The same of sa | | | | | | | | - | | 02 | restion | Pay | De | 1 S | 0 + | | | | ch | inge o | 7 | 0-1 | | | | - | - | - | 100 | de | one I | nte | ~ | 200 | 1., | 100 | | | | inge c | 4 | 000 | use | Ti | the | | | | | | | | | | 7 | | | | 5 NO | old cou | use | New | Course | | A | | | | | | | | - | | | | - | | | Code | | Coc | la | 01 | d Co | am | Q T | ithe | Ne | w (| - our | T | . 0 | | - 2 - | | , | | 1 | 01d Code
Code | 32 | 1901 | SR2 | N | | 0 | | | | - | - | - 111 | 0 | 1 | ch | ang | 0 | | | 10000 | | | 1-02 | 54 | nthe | x ax | nd nu | 2. | Dy | esa | nd Pic | me | -1 | A | BC | er | | | 2. | 1905 co | | 1- | | - | 300 | | | 9 | | | and Pie | | -11 | 4 | t co | ws | 9 | | | 1000 | -16 | 140 | 50016 | G | rea | c | heni | 34. | 0 | | | | | 1 | | | | | ~! | | | | The season | F | rac | tice | als | 9 | 50 | DUR | ation | م ا | - | 00 1 | XPE | clu | 20 | | 1/2 | w Co | uns | res | Int | rod | uce | 0 | - | | - | | Synt | hes | 10 | 2 | en | 000 | d | | 5. NO (| Code | Cow | lo - | Title. | Rel. | evar | ice | to | Sco | 200 | 1. | | | | | | | | | | Code | | 1964 | 100 | _ | - | 2000 | 1 100 | | | | | Ne | 2 | 2 - | to | - | | | | | | | 7.00 | _ | R | 7 | G | EMP | EN | TRE | SP | I | 1 | bor | auc | tic | on | | 1 2 | 1045104 | (e) | xtile | 1'00 | 2 34 | 1000 | N | - | Emp | 6 | 4 | | | | - | | | | | | - | | - | Barrie ! | | | | | | | 114 | | Ent | 200 | pr | 2 1 | ear | N | | Re | vised | Co | sure | es | | 1 | | See 17 | - | - | | | | | 7 . | | | - | | | | | | | 7 9 65 | | 1-1-1 | | The state of s | | | | | | | | | | | 000 | | - | | | | | | - | - | - | | | | | | | | | | 2110 | code | TIH | se | No. | 27: | the | of | un | its | | 7. of | Need | Pa | ele | van | e to | Sc. | op | | (| Part Control | | | | | | | | | | sion | Revision | L | R | 7 | G | 4 | F | | | | Dya | 12 | Unit- | 107 | itte | Ca | n be | Chang | ed | 2 | Course | - | | | 01 | Emp | 71 | | | 764582 | 0:- | ente | |) | 20- | | | | | 20 | Perchi
Peronim
datio | 10 | | N | | Emp | | | 1. 10 | Deliver Co. | Dya | | as f | | | | | | | | | | - | | | 1 | | | 1. 10 | 9 C5 CC16 (| - | ntional | | | | | | | 3: | 50 | To inclu | b | | | G | Emf | 2 | | 1. 10 | 9050016 | Conve
and
Since | ntional | 3 New
were
meth | In | ave
clud | ntio
led ! | 200 | Expt | 3: | 50 | To incluse memore | 0 | | | G | Emf | 2 | | 1. 10 | 9050016 | Conve
and
Since | ntional | | In | ave
clud | ntio
led ! | 200 | Expt | 3:- | 50 | To incluse semous Experiment | 0 | | | G | Emf | | | 2 10 | 955006 | Conve
and
Gines
Synth | ntional
n
hesis | 3 New
Were
meth
Incr | In | ed. | ntio
led ! | مو | Expt | | 50 | Experi | 3 | | | G | Emf | | | 2 10 | pdation | Conve
and
Sines
Synti | ntional nests | 3 New
were
meth
Incr | In als | elud
& Pe
ed. | ntio
led ! | مو | Expt | | - | Experi | 3 | | | 9 | Emf | | | 2 10 | 955006 | Conve
and
Sines
Synti | ntional nests | 3 New
were
meth
Incr | In als | elud
& Pe
ed. | ntio
led ! | مو | Expt | | 50 | Experi | 3 | | | 9 | Emf | | | 2 10 | pdation | Conve
and
Sines
Synti | ntional nests | 3 New
were
meth
Incr | In als | elud
& Pe
ed. | ntio
led ! | مو | Expt | | - | Experi | 3 | | | 9 | Eml | | | 1. 1° 2. 1° 2. u 3. R | pdation
evisi | Conve
and
Sines
Synti | ntional
nests
ope | 3 New
were
meth
Incr | L Ti- | elud
& Rud
ed. | of in | Ceso | exptine neare | A | - | Experi
ment | 2 . P | ele | . Va | G | | op | | | | I somerism (Tonisation, tialenge | - | | | | | |----------|----------|--|-----|-------------|------|----|------| | | | - Conisation | | | | | T | | | | Ligard, hydrate & Co-onlinate | | No. | | | | | Chemidho | | - L. D. ale | | | | | + | | - 431 | | a) Maria | | | | | | | - | | Posifion Lauren | | | | | 1 | | | | Unit - 111 - Reaction Mechanism | | 100 | | | | | | | Und - 111 - Directe com Orgin | - | | | | 1 | | | | unit - III - Reaction Mechanisms to coone inte complete lyging in b coone interest hydrolyging SNICR | | 1000 | | | | | | | SNIES Judyson SN CI | - | | | | 1 | | | | Base Hydel. | | | | | | | | - | Base Hydrolytis 5N'CR | | | | | | | | | unit I - Batic Problems Involving
unit III - Problems Involving
unit III - Small mole wile. | | | | | | | 19CSMEL | Spectro | unit Ti- Problems to when | - | | | | | | | scopy | LIII Small Me | - | | | G | E | | | | Danil Dani INVESTIGATION | 5 | Che Com | L | | Em S | | | | Unit V. Problem fragmentation | | 24.42 | | | | | | | Simple Swith Nitrage | A- | | | | | | | | ettalogen Functional | | 502 | | | | | | | Malagen | | | | | | | | | groups | 0-1 | Since the | | GI | E | | | | a liter of the following | 201 | | | | m | | 19c6cc17 | Organic | Deletion of the following | | Course | | | P | | | co | unit I - Preparation & Properties | | | | | | | The same | Chemismy | of 1/2-, 1/4-42,6-Naphtha | | isfound | | | | | | - TV | guineres, Naphthoricaids, | | 0 | | | | | - | | | | to be | 49/1 | | | | | | gheranthraquinone | | | | | | | | | The shanistry of | | too | | | | | | | Unit-Til Stereochemistry of | | · akal | | | | | | | arnino aids, Primary Streetwar | | heavy | | | | | | | and denomination | | | | | | | | | Profeirs-Fribrousd-Galobula | 1 | for | 13 | | | | | | proteins. | | | | | | | | | Unit is - Styucture and | | Students | | | | | - | | Synthesis of Comphors | | | | | | | | | Zingibereres in Unit-Y | | 12000 | 100 | | | | | | - Structure & Syntherist | | | | | | | | | munie | | | | | | | 100 | | | | | | | | | 19C6ME3 | Advanced | unit III - contents in organis | 15% | As per | 1 | 6 | E | | | order or | Photo chemistry - Elaborated | - | the | | 6 | 23 | | | Organic | o respondent any | | suggestions | | | 1 | | | 7 | Oldi-10 - Tri con 1 1 1 | | | | | | | | Chemstry | Name of the Pearangement | 5 | Given by | | 4 | | | | | can be spentised | | Subject | | 1 | | | | | Unity-Title can be chan | | Experts | | | | | | | as Reagents & pearrance | | Court | +++ | + | 11 | | | | as Reagents & Rearrange to Can be deleted in Title & Conten | h | Teachers | | | | | | | Enter | (-) | 1. wichers | | - | 1 | | . New C | ourses o | Totadual | | | | | | | 1 23065L Herbal N EMP ENTRE SP I | Ne C | Code | Course | Rel | leva | nce t | 0 | SLOP | re for | | |----------------------------------|------|--------|------------|-----|------|-------|---|------
--|---| | ZC N EME ENTER SD T | - | 1306SL | Title | L | R | N | G | - | an and | Need for
Introduction | | -Smch(A | 2 | | Herbal | | 1 | N | | War. | ENTRE SD | To develope | | 5 | | | - SINCALLA | | | 4 | 4 | - | Children of the Control Contr | Entrepreneur
Skill of Lear
[Beaufician | | | | | S INTRODUC | Rel | 240 | nu | To | 5 | scop | W. C | for New | |-----|----------|----------|---------------------------------------|--------------------------------|-----|------|------|----|------|------|----------| | 5.1 | code | | nester | 1 | R | 2 | G | 6 | mp | 22 | 50 Intra | | - | - | | ganic Chemistry | 100000 | | 1000 | G | | | | | | | - | | Semester | | | | - | 1 | | | | | | - | | | . 7 | | - | G | - | mr | | | | 2 | CC2 | | Semester . | | | | 01 | E | | | | | | | | 50112101 | | | | | | | | | | 3 | cc3 | Vol | umetric Analys | [Li | | | Gr | E | me | | SD | | | | | Semester | | | | 10 | + | | | | | | | | | | | | C | - | ms | | | | 4 | CC4 | | rganic chemis | | | | 0 | - | 1710 | | | | | | 1 | Somester | | | | | 1 | | | | | - | ccs | orga | in Chemistry. | 1 | | | 6 | E | MP | | | | | | | Semester | | | | | | | | | | | - malou | Andrew ! | A . I S . I S . I S . I S . I S . I S | - | | - | | - | | | Co | | 6 | cc6 | volu | metric Analysi | 411 | | | 67 | - | mr | | 24 | | | | 12 II | Semester | | | | | | | | | | | | | ses Introdu | ad cra | nt | -111 |) | | 444 | | | | | | | | | | - | | | - | | | | | Genericy | Course | Course T | itle | Rel | evou | nu - | 10 | Su | pe | for | | No. | Specific | code | 4 | - | , | R | N | 6 | Emp | EN | 750 | | | Semester | | | | - | | - | 1 | | | 1000 | | , | Generic | ECI | Basic concepts | of | 1 | | 14 | | Em | | | | | LISemest | | chemistry for | Biological | | | | | | | | | | - | | Sciences | · /- 1 · · · · · · · · · · · · | | | 2 | | Eng | | SD | | | Generic | Ec2 | Organic Qual | VIOLIT VE K | 1 | 1 | | | 1 | | | | Shill Enhancement/ Fo | undation/ Ability Es | nha | مرعا | nen | t | Con | se | Po | ut-W | |--|--|------|-------|------|----|------|----------|----|-----------| | | Course | Rel | eva | na | to | Sco | pe | 1 | Ved
to | | SNo Semester Code | Title | 1 | R | NO | 7 | Emp | TRS | D | ntode | | 1. SEC(NME) SEC-1 | Profitable Home
Industries | | | 2 | | Ems | ENTRE | | - | | 2. FC FC | Concepts of Chemistry
to Beginners | | | | 57 | EMP | | SD | | | 3. SEC(NME) SEC-2
FII Semester | Profitable Home Indultries | | - | 2 | | Emp | CISH SIT | | | | 4 SEC SEC-3 (Discipline Specific) ETI Semester | Dye & Pigmerts | | 1 | V | 3 | ENG | | | | | 5. Introduction of Purely Advanced Diploma Val 6. Approval of Ph.: 7. Rubrics for Inter | ne added Course others
D. Course work Sy
nship/Project | than | , the | at a | In | endy | | | : NIL | | other Suggestions 1. In FC, Problems can Contents Teaching of | be included in | 0 | on | UG | - | Syl | tic | bu | us ei - | | focused on Problem 2. The title volumetric A. Prenamed as Green | solving method nalysis - 1 can be | | 100 | d | 4 | - | 00 | | eavy | | 3. For Organic chemistry
& Boyd RN-organic
be included as one of | I & II - Morrison R.T. | | | | | | | | | | 200 | | - 30 | a market w | | 4506 | | | | | | | |-------|--|----------------------------|------------------------------|--------|----------|------|----------|-------------|----------|---------|----------| | 1 | Minu | tes of the | Board of | Stu | dies: | PG | | | | | | | 1.4 | 1 resen | tation of | the Action | 50 1 | aker | K | sport | c to | × 202 | 22 - 2 | 2023 | | 5.0 | b. Commo | on Suggesti | ons offered | in the | Prev | ious | Board. | Actio | n tak | endo | , the | | | | | 44.50 | 420.00 | 20/39 | | | Acade
20 | mic 22 - | year | ^ | | 1- | 1990 | 514 (17 - 00 | it-I - Abs | orpti | on, E | mix | sion, | The | give | Sug | justio | | | Can | BENR IN | teraction and | £in | stein | Coe | Hicient | الم أ | PG4C | orat | ed | | C | | | se Title: | 200 | - | | | | | | | | | 1 | 7 | | | 1 1 - 20 | | 2-1-0 | 4390 | | | | | S.N | o. old Co. | use New Cour | se old course | Title | New | Cou | NSE TI | tla | | ed of | | | 1 | 19861 | C5 198616 | Organic Que | 071215 | Or | gar | 17 Qual | itati | 12 Rec | omme | a Aont | | | Part a | 1 | Analysis | -urani | Prep | ana | tion- | I | 0 | bied | Ten | | 2 | 198672 | C10 19PG2C | 10 Organic | -) | | | Estin | | | | | | | 10000000 | | Quantitative | Analy | sis & | Pre | parat | ion-I | 700 | use' | Teach | | 1 | 10 | 100 | and Prepara | tions | 100 | (W | 15.14 | 124 | 250 | bject | Expe | | 1 | JEW C | ourses In | troduced | | - | | A 175 | 1 | 100 | 5-11-11 | | | 5. NO | o Cours | e Course | Title | Rela | evana | 70 | Scop | e dor | | reed | | | | Code | E ST NOW | over the same | L | RN | G | Emp E | NTRE. | SD | ntrod | Lucti | | 1 | 22 PGC
SLCF | 4 Botterie | s and its | | N | | EMPE, | ntre | En | incre | abilia | | R | The state of s | 2 courses | | | 3 3 | | | | | Entre | Shi | | | | | | | | | | | | | | | | Course | | NO- LTITLE of
Revised wit | - unil | 13 %. | 9 | Need | Rele | vance | to So | iope | | | code | Title | Revised cont | ent- | 3 | iont | Devision | LR | N | 12 E | EN
TR | | 1. | 1986165 | analysis L
Preparations | and UV can I | ting I | R 10 | 10 | | | 1 | E | | | | | | Inclusion of | | - | - | - | - | 1 | - | | | | | | , | | - | _ | + | | | |
--|---------|------------|---|-------|-------|-------|-------|---------|-------|-------------| | | | | instead of Gluebe to | 9 | 0 1 | | | N | En | P | | | | | | | 207. | | | | | 2 | | | | | spectral Analysis Compounds wing Ir Compounds wing Ir Compounds wing Ir | RUY | 1 | 10 | 4 | | | | | - | | | Charport Include | | | | 2 100 | | C 50 | REN TRE | | | | | Title of Units I II changed as fotat | 51 | 15% | BANG | - | | U P | EN - | | 0 | 1900-11 | | | | | | | | | , VE | | 3 | 1754 | rypica | changed as fotar | 001 | - | | | | | | | | CII | Chemisty | changed as fotation of the transcent of with the transcent Reson | ance | 1344 | 1000 | 0 | 10000 | 1 | - | | | | -10 | Electronic & Reson | - | | | | | | 1 | | - all objection | 200 | 142000 | and most bours | 2 | | | - | | | - | | | 4400 | | Charles Al Bill | not | | | | 1941 | | | | - | | | Unt-I-Inclusion | tion | 1000 | - | | | | | | LANDE SCHOOL | 950 | n-SAAI | NMR Instrumente | nison | | | 18 | 12000 | | | | | | | | | - | | | | | | | - Jashara gra | 21 111 | SALVERS N | THE PARTY | | 613 | 126 | - | | | + | | - Files | | A COLOR | can be included. | | | | | | G C. | 0 001 | | | | | 1771 | ev | 10% | | - | | OI EN | P EN S | | 4 | 19864 | Analytical | Title of unit I, II | rror | | | | | 1 | | | | CEH | L. ish | are changed as f
Analysis Chromato | rophy | | | | | | _ | | | | Chemising | Analysia Command | 1 | | | 1000 | 1000 | 9 10 | + + | | - Link | | T ALLEY | & Computers in Ch | mison | | | 1 | 140 | | | | The same of sa | | | I W A A A T Char. | 1000 | | | - | | | | | - 430 | | 1 | in content with | | - | | 0110 | | | - | | Report of the same | | | Till-DTA caybe | | 7 00 | | - | 1 | | | | - | | - 1 | open Educati | -01 | Re | inus | us | in tw | 7 | ATTI | | a. | upd | ations | f open Educati | 0000 | | , , | | | 7 - | NIT - | | a | 010 | | nences of each o | our | ses | 0.00 | | 1.50015 | 9 | | | The same of the | list | de vade | rances of | | | 11 | lor' | TIPE | -02 | E Syllabu_ | | 3 | Rev | ision | of Courses | | | | | | | | | - 0: | | | urses Introdu | · D | . 01 | 11 (| for | TIPO | m-0 | BE | | 1 | , Ne | w co | uses Introduce | | . 10 | | 6 | | Sy | elabus | | | 00 | 2000 | SCHE SYLLABO | (20 | 1014 | 19-11 | 100 | - | | | | I | - PG | CHAIC | SCHE | | | - 1 | | | | | | | - ana | Cour | ses Introduced | CP | ant | A |) | - | | | | The same of sa | 0,0 | | 3 moustak | | | | | | | | | 1 | 12000 | | | 10 A | | | | Craw | o Pen | niegel | | | | · · Co | use Title & | Reli | eva | nce ' | 10 | 2004 | -00 | Need - | | 5. | Cour | | | 1 | 0 | 10 | _ | Good | N C | Jor Introdu | | No | . code | Se | mester | - | K | 10 | 57 | FINIT | RES | | | - | | | | | | | | | 100 | - | | | PG- | In | organic Chemistry | 1000 | 27430 | 175 | 67 | EMA | - | - | | | CCI | | | | | | | 1 | | - | | 4 | | -1 | 2 I I Semester | | | 100 | 13.3 | | | | | | 1798 | 234 | | | | 1 | | 1 | | | | Total Control of the | | | | | | | | | | | | 2 | PG1- | Org | and Chemistry I | 1 | | | 6 | EMP | 600 | | | The state of s | | | | 1 | 1 | | 01 | - Italy | 4 | 1 | | | CC2 | - 4: | I Somester | 1 | | 1 | | 1 | | - | | | 13000 | | | | 93 | 130 | 1063 | 4 | 1 | | | | 1 | | ACCEPTAGE TO | 100 | 1000 | 1000 | Aug | 124 | 200 | - | | | | | | 100 | | | | - 1 | | | | 2 | Pr- | PI. | 18 10 01 11 0 | - | | | 1 | - 10 | | | | 3. | PG - | | ysical Chemistry - | | 1 | 100 | G | EMP | - | | | 3. | | | | | | 1 | G | EMP | | | | 3. | PG - | | ysical Chemistry - S
Esemester 8 | | | | G | Emp | | | | 3. | | | | | | 100 | G | EMP | - | | | | PG-
CC4 | Inorganic chemistry-II | | Gı | THE THE | | | |---|------------|---|-------|----|-------------|---|--| | | PG. | Organic Chemistry - II
& II Semester | - 100 | G | TAST TO THE | 1 | | | 6 | PG- | Physical Chemistry - II | | G | € E6 | | | | | 566 | & II Semester | | | | | | # Elective courses Introduced (Part-A) | S | No | Generic/
Discipline | | Course Title | Rel | | | 1000 | | | | Need for | |---|-----|--------------------------|-------|------------------|---------|-----|-----|------|-------|-------|----|----------| | 1 | | Specifice
Semestu | Code | was through to | L | R | N | G | 73Th | M2+2H | SD | Intro- | | 1 | | oiscipline
specifica | _ | Inorganis | - | | | G | | | 50 | | | | | I Sementer | | Analysis | 100 | 36 | | | | | | | | d | 2. | Disciplia | PG- | organic | d o | - | 240 | G | EMI | | SD | | | | | Specific 4
I Semester | | Practical | 400 | | 1 | | 100 | | | | | 0 | 3 | Generic | PG- | Analysis of Soil | and and | 100 | 7 | - | - Com | o cal | | | | | | 2
II Semester | EC3 | water, food, | | | | | - Tm | PENTE | | | | | - | - semester | | Fertilizer | | - | 101 | | | | | | | - | 4 | Discipline | PG- | Inorganic | | 13 | 100 | G | Err | | SD | | | 1 | 911 | Specific | ECH (| Analysis 9 | | | | | | - | | | | | | | 1 | | 1 | 1 | | | 10 | 1 | | | | Skill Enhance | oment/ | Ability Enhancement | Course (Part-B) | | |-----------------------|---------------|---|--|------------| | | | Course Title | Polevanie Scape Nes
to for Intro
LRNGEMPTESD | 1 dt 24/20 | | 1. SEC
AISemester | PGI-
SEC-1 | Computational | N EMP SD | | | 2 SEC
RTI Semester | PG1-
SEC-2 | Preparation of
Consumer Products | N EMP TR | 1 | | 5. Introduc | tion of | Purely Skill-Embed | ided conficate/g | | | 6. Approvo | n tenal | h.D. Course work | Syllabus : NI | | | 8-Delails | of Prol | Internship (Projec
possed/Signed Mo
NOU with Material | Research centre, | | | The S | yllebus | for all the abox | of Three years. | es | | are review | ved an | d parted in the one framed and | Board. The front & | age | | Other Sug | gention | A CONTRACTOR | Maria II | | Other Suggestions Commendations. 1. Jerry March. A. - Advanced organic 1. The syllabus for Chemistry-Book can be removed all the courses from Peterene for organic chemistry are very Grood I & II Courses 2. NPTEL Study material can be included 10% # II B.Sc. Chemistry SEMESTER -IV ## For those who joined in 2019 onwards | PROGRAMME | COURSE | COURSE | CATEGO | HRS/WEE | CREDIT | |-----------|----------|-------------------------------|---------------|---------|--------| | CODE | CODE | TITLE | RY | K | S | | UACH | 19C4CC10 | Inorgani
Chemistr
- III | Major
Core | 5 | 4 | **COURSE DESCRIPTION:** The Course enables the students to gainknowledge on the chemistry of coordination compounds, carbonyl compounds and "F' block elements. **COURSE OBJECTIVES:** This course provides an extensive study of coordination complexes, including their spectral and magnetic properties and 'F' block elements #### **UNITS** UNIT -I Theories of Coordination – I (15HRS.) - a). Introduction classification of ligands, nomenclature, preparation of complexes and detection of complexes using solubility, colour change, conductance measurements and visible absorption studies. Basis for isomerism in complexes and different types of isomerism. - b). Werner's theory -merits & demerits. Sidgwick's electronic concept of effective atomic number and EAN rule as applied to carbonyls **Self Study**:Chemical test for distinguishing *cis-trans* isomers. **UNIT -II** Theories of Coordination – II (15HRS.) a). Valence bond theory – Introduction, Hybridisation, sp 3 , dsp 2 , dsp 3 , d 2 sp 3 , & sp^3d^2 , merits & demerits. - b).Crystal Field theory Introduction, crystal field splitting in octahedral, tetrahedral & square planar arrangement of ligands. Spectro chemical series, ligand field effect and colour, crystal field stabilization energy , factors affecting the magnitude of Δ_0 and its application.Distortion of octahedral complexes and John-Teller theorem. Limitations of CFT. - c).M.O.Theory M.O. Theory as applied to octahedral complexes, Pi- bonding and M.O. theory,
Merits. **Self Study:** Structure of Spinels ## **UNIT -III** Mechanism in coordination complexes (15 HRS.) - a).Kinetics of complexes stability Kinetic and thermodynamic stability Factors affecting stability and lability Stepwise and over all stability constants (determination not required) - a) Mechanism of hydrolysis reactions in octahedral complexes. - **b)** Mechanism of ligand substitution reaction in square planar complexes, Trans effect, trans effect in synthesis, Mechanism of trans effect. - c) Spectroscopic states: L-S coupling & J-J coupling schemes, derivation of spectroscopic states for free C-atom. **Self Study:** Mechanism of trans effect. ## **UNIT -IV** Organometallic Chemistry (15HRS.) Preparation and structure of metal carbonyls – $Ni(CO)_4$, $Fe(CO)_5$, $[V(CO)_6] \& Mn_2(CO)_{10}$. Metal nitrosyls – sodium nitroprusside and nitoso ferrous sulphate. Ferrocene (structure based on VBT). **Self Study:** Co₂(CO)₈and Fe₂(CO)₉ ## **UNIT -V**: 'F' Block Elements (15 HRS.) a). The lanthanide series electronic configuration, Oxidation states, spectral and magnetic properties of ce^{3+} and yb^{3+} , causes and consequences of lanthanide contraction - separation of lanthanides by fractional crystallization, solvent extraction, precipitation, change in oxidation state and Ion exchange chromatography. b). Actinides The actinide series and electronic configuration. Extraction of Uranium from pitchblende. **Self Study:** Extraction of thorium from monazite #### **REFERENCES:** - 1. R.D.Madan, Wahid U.Malik&G.D.Tuli, -Selected topics in Inorganic Chemistry S.Chand& Company LTD. 2010 For Units I, II and III - 2. B.R.Puri, L.R.Sharma& K.C. Kalia. "Principles of Inorganic Chemistry" Milestone Publishers, 2014, For Unit IV. - 3. James E HuheeyInorganic Chemistry, II Edn.,.Published by Dorling Kindersley (India) Pvt.Ltd. 2009 For Unit III (d) ## **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | |--|---------------------------|--------------------|----------------------|------------------|--|--| | UNIT -1 Theories of Coordination – I (15HRS) | | | | | | | | 1.1 | Introduction | 1 | Chalk &
Talk | Black
Board | | | | 1.2 | Classification of ligands | 2 | Chalk &
Talk | Black
Board | | | | 1.3 | Nomenclature | 3 | Lecture | Black
Board | | | | 1.4 | Preparation of complexes | 1 | Lecture | Black
Board | | | | 1.5 | Detection of complexes using solubility,colour change,conductance measurements and visible absorption studies | 2 | Lecture | Black
Board | | |---------|---|---------------------------------|--------------------|----------------|--| | 1.6 | Basis for isomerism in complexes | 1 | Discussion | Black
Board | | | 1.7 | Different types of isomerism. | ferent types of isomerism. 2 Le | | | | | 1.8 | Werner's theory –merits & demerits | 1 | Discussion | Black
Board | | | 1.9 | EAN rule as applied to carbonyls | 2 | Problem
solving | Black
Board | | | UNIT -2 | Theories of Coordination – II | (15 | HRS | | | | 2.1 | Valence bond theory – | 3 | Lecture | Black | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------| | | Introduction, Hybridisation,sp ³ , dsp ² , dsp ³ , d ² sp ³ , & sp ³ d ² , merits & demerits. | | | Board &
Models | | 2.2 | Crystal Field theory – Introduction, crystal field splitting in octahedral, tetrahedral & square planar arrangement of ligands. | 2 | Chalk &
Talk | Black
Board | | 2.3 | Spectro chemical series, ligand field effect and colour &crystal field stabilization energy . | 3 | Problem
solving | Black
Board | | 2.4 | Factors affecting the magnitude of Δ_{0} and its application | 2 | Chalk &
Talk | Black
Board | | 2.4 | Tetrahedral Vs Octahed Complexes.Distortion of octahed complexes and John-Tell theorem.Limitations of CFT | 2 | Chalk &
Talk | Black
Board | | 2.5 | M.O.Theory – M.O. Theory as applied to octahedral complexes, | 2 | Chalk &
Talk | Black
Board | |---------|---|----------|-----------------|----------------| | 2.6 | Pi- bonding and M.O. theo Merits. | 1 | Discussion | Black
Board | | UNIT -3 | MECHANISM IN COORDINATIO | N COMPLI | EXES (15 | SHours) | | 3.1 | Kinetics of complexes – stability
– Kinetic and thermodynamic
stability | 2 | Chalk &
Talk | Black
Board | | 3.2 | Factors affecting stability and lability | 2 | Chalk &
Talk | Black
Board | | 3.3 | Stepwise and over all stability constants (determination not required) | 2 | Chalk &
Talk | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|------------------| | 3.4 | Mechanism of hydrolysis reactio in octahedral complexes. | 2 | Chalk &
Talk | Black
Board | | 3.5 | Mechanism of ligand substitut reaction in square plan complexes, Trans effect, trans effe in synthesis, Mechanism of tra effect. | | Chalk &
Talk | Power
point | | 3.6 | Spectroscopic states: L-S coupling & J-J coupling schemes. | 2 | Chalk &
Talk | Black
Board | | 3.7 | Derivation of spectroscopicstates for free C-atom | 2 | Derivation | Black
Board | | UNIT -4 | ORGANOMETALLIC CHEMISTR | Y (15Hour | rs) | | | 4.1 | Preparation of metal carbonyls | 2 | Chalk &
Talk | Black
Board | | | |-------------------------------------|--|---|-----------------|----------------|--|--| | 4.2 | Ni(CO) ₄ , Fe(CO) ₅ , [V(CO) ₆], | 3 | Seminar | Black
Board | | | | 4.3 | Mn ₂ (CO) ₁₀ , Co ₂ (CO) ₈ and Fe ₂ (CO) ₉ . | 1 | Chalk &
Talk | Black
Board | | | | 4.4 | EAN calculation | 2 | Chalk &
Talk | Black
Board | | | | 4.5 | Metal nitrosyls – sodium
nitroprusside and nitoso ferrous
sulphate. | 3 | Chalk &
Talk | Black
Board | | | | 4.6 | Ferrocene (structure based on VBT) | 4 | Chalk &
Talk | Black
Board | | | | UNIT-5 'F' BLOCK ELEMENTS (15Hours) | | | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|----------------------------| | 5.1 | The lanthanide series electronic configuration, Oxidation states, spectral and magnetic properties of ce ³⁺ and yb ³⁺ | 4 | Chalk &
Talk | Black
Board | | 5.2 | Causes and consequences of lanthanide contraction | 1 | Chalk &
Talk | Black
Board | | 5.3 | Separation of lanthanides by fractional crystallization, solvent extraction, precipitation, change in oxidation state and Ion exchange chromatography | 3 | Chalk &
Talk | Black
Board &
Models | | 5.4 | The actinide series and electronic configuration | 3 | Chalk &
Talk | Black
Board | | 5.5 | Extraction of Uranium from pitchblende and thorium from monazite. | 5 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | C 5 | Total
Scholasti
c Marks | Non
Scholastic
Marks
C6 | CIA
Total | % of
Asses | |-----------------------|------------|---------|--------|--------------------|-------------|-------------------------------|----------------------------------|--------------|---------------| | Levels | Т1 | Т2 | Quiz | Assig
nmen
t | OBT/PP
T | | | | smen
t | | | 10
Mks. | 10 Mks. | 5 Mks. | 5 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 2 | 2 | - | - | - | 4 | - | 4 | 10 % | | К2 | 2 | 2 | 5 | - | - | 9 | - | 9 | 22.5
% | | К3 | 3 | 3 | - | - | 5 | 11 | - | 11 | 27.5
% | | K4 | 3 | 3 | - | 5 | - | 11 | - | 11 | 27.5
% | | Non
Schol
astic | - | - | - | - | - | | 5 | 5 | 12.5
% | | Total | 10 | 10 | 5 | 5 | 5 | 35 | 5 | 40 | 100
% | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I UG are : K1- Remember, K2-Understand, K3-Apply, K4-Analyse ✓ The I UG course teachers are requested to start conducting S1, W1, M1,in due intervals of time. **√** ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | | MARKS | | | |------------|-----------|----|---------------------|------------|-------|-----|-------| | C1 | C2 | С3 | C4 | C 5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests C2 – Average of Two Monthly Tests C3 - Mid Sem Test C4 – Best of Two Weekly Tests C5 - Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|-------------------| | CO 1 | Know the structure and bonding of important coordination compounds | K1, K2, K3
&
K4 | PSO1& PSO2 | | CO 2 | Apply the rules to calculate the magnetic properties of complexes and how magnetic moments canbe employed for the interpretation of their structure | K1, K2, K3 &
K4 | PSO3 | | CO 3 | Get an overview about the reaction mechanism of metal complexes | K1, K2, K3 &
K4 | PSO5 | | CO 4 | Import the skills to elucidate the | K1, K2, K3 & | PSO7 | | | structure and mode of bonding | K4 | | |------|---|--------------------|------| | | in organometallic compounds | | | | CO 5 | Gain knowledge about the chemistry of Lanthanides and Actinides | K1, K2, K3 &
K4 | PSO7 | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO3 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO4 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | | CO5 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | Mapping of COs with POs | CO/ PSO | P01 | P02 | P03 | P04 | |---------|-----|-----|-----|-----| | CO1 | 3 | 3 | 1 | 2 | | CO2 | 3 | 3 | 2 | 2 | | CO3 | 3 | 2 | 2 | 2 | | CO4 | 3 | 2 | 2 | 2 | | CO5 | 3 | 2 | 2 | 2 | - **Note**: ♦ Strongly Correlated **3** - ◆ Moderately Correlated 2 - ♦ Wakly Correlated -1 ## **COURSE DESIGNER:** - 1. Dr.A. Rajeswari - 2. Ms. RM Nagalakshmi Forwarded By B-Tedora. **NEW** # II B.Sc. Chemistry SEMESTER -IV ## For those who joined in 2019 onwards | PROGRAMME | COURSE | COURSE | CATEGO | HRS/WEE | CREDIT | |-----------|----------|--------------------------------|---------------|---------|--------| | CODE | CODE | TITLE | RY | K | S | | UACH | 19C4CC10 | Inorganic
chemistry-
III | Major
Core | 5 | 4 | **COURSE DESCRIPTION:** The Course enables the students to gainknowledge on the chemistry of coordination compounds, carbonyl compounds and "F' block elements. **COURSE OBJECTIVES:** This course provides an extensive study of coordination complexes, including their spectral and magnetic properties and 'F' block elements #### UNITS UNIT -I Theories of Coordination – I (15HRS.) Introduction – classification of ligands, nomenclature, preparation of complexes and detection of complexes using solubility,colour change,conductance measurements and visible absorption studies. Basis for isomerism in complexes and different types of isomerism. Structural isomerism (Ionisation, linkage, ligand, hydrate and co-ordination position isomerism c). Werner's theory -merits & demerits. Sidgwick's electronic concept of effective atomic number and EAN rule as applied to carbonyls **Self Study**:Chemical test for distinguishing *cis-trans* isomers. UNIT -II Theories of Coordination - II (15HRS.) a). Valence bond theory – Introduction, Hybridisation, sp³, dsp², dsp³, d²sp³, & sp^3d^2 , merits & demerits. - b).Crystal Field theory Introduction, crystal field splitting in octahedral, tetrahedral & square planar arrangement of ligands. Spectro chemical series, ligand field effect and colour, crystal field stabilization energy , factors affecting the magnitude of Δ_0 and its application.Distortion of octahedral complexes and John-Teller theorem. Limitations of CFT. - c).M.O.Theory M.O. Theory as applied to octahedral complexes, Pi- bonding and M.O. theory, Merits. **Self Study:** Structure of Spinels ## **UNIT -III** Mechanism in coordination complexes (15 HRS.) - a).Kinetics of complexes stability Kinetic and thermodynamic stability Factors affecting stability and lability Stepwise and over all stability constants (determination not required) - d) Mechanism of hydrolysis reactions in octahedral complexes. - **e)** Mechanism of ligand substitution reaction in square planar complexes, Trans effect, trans effect in synthesis, Mechanism of trans effect. - f) Spectroscopic states: L-S coupling & J-J coupling schemes, derivation of spectroscopic states for free C-atom. Reaction Mechanism in 6-coordinate complexes SN₁ and SN₂, Acid hydrolysis, Base hydrolysis SN₁CB **Self Study:** Mechanism of trans effect. ## **UNIT -IV** Organometallic Chemistry (15HRS.) Preparation and structure of metal carbonyls – $Ni(CO)_4$, $Fe(CO)_5$, $[V(CO)_6] \& Mn_2(CO)_{10}$. Metal nitrosyls – sodium nitroprusside and nitoso ferrous sulphate. Ferrocene (structure based on VBT). **Self Study:** Co₂(CO)₈and Fe₂(CO)₉ ## **UNIT -V**: 'F' Block Elements (15 HRS.) a). The lanthanide series electronic configuration, Oxidation states, spectral and magnetic properties of ce^{3+} and yb^{3+} , causes and consequences of lanthanide contraction - separation of lanthanides by fractional crystallization, solvent extraction, precipitation, change in oxidation state and Ion exchange chromatography. b). Actinides The actinide series and electronic configuration. Extraction of Uranium from pitchblende. **Self Study:** Extraction of thorium from monazite ## **REFERENCES:** - 1. R.D.Madan, Wahid U.Malik&G.D.Tuli, -Selected topics in Inorganic Chemistry S.Chand& Company LTD. 2010 For Units I, II and III - 2. B.R.Puri, L.R.Sharma& K.C. Kalia. "Principles of Inorganic Chemistry" Milestone Publishers, 2014, For Unit IV. - 3. James E HuheeyInorganic Chemistry, II Edn.,.Published by Dorling Kindersley (India) Pvt.Ltd. 2009 For Unit III (d) ## **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---------------------------|--------------------|----------------------|------------------| | UNIT -1 | Theories of Coordination | - I (| (15HRS) | | | 1.1 | Introduction | 1 | Chalk &
Talk | Black
Board | | 1.2 | Classification of ligands | 2 | Chalk &
Talk | Black
Board | | 1.3 | Nomenclature | 3 | Lecture | Black
Board | | 1.4 | Preparation of complexes | 1 | Lecture | Black
Board | | 1.5 | Detection of complexes using solubility,colour change,conductance measurements and visible absorption studies | 2 | Lecture | Black
Board | | |---|---|---|--------------------|----------------|--| | 1.6 | Basis for isomerism in complexes | 1 | Discussion | Black
Board | | | 1.7 | Different types of isomerism. | 2 | Lecture | Black
Board | | | 1.8 | Werner's theory –merits & demerits | 1 | Discussion | Black
Board | | | 1.9 | EAN rule as applied to carbonyls | 2 | Problem
solving | Black
Board | | | UNIT -2 Theories of Coordination – II (15HRS) | | | | | | | 2.1 | Valence bond theory – | 3 | Lecture | Black | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------| | | Introduction, Hybridisation,sp ³ , dsp ² , dsp ³ , d ² sp ³ , & sp ³ d ² , merits & demerits. | | | Board &
Models | | 2.2 | Crystal Field theory – Introduction, crystal field splitting in octahedral, tetrahedral & square planar arrangement of ligands. | 2 | Chalk &
Talk | Black
Board | | 2.3 | Spectro chemical series, ligand field effect and colour &crystal field stabilization energy . | 3 | Problem
solving | Black
Board | | 2.4 | Factors affecting the magnitude of Δ_{0} and its application | 2 | Chalk &
Talk | Black
Board | | 2.4 | Tetrahedral Vs Octahed Complexes.Distortion of octahed complexes and John-Tell theorem.Limitations of CFT | 2 | Chalk &
Talk | Black
Board | |---------|---|----------|-----------------|----------------| | 2.5 | M.O.Theory – M.O. Theory as applied to octahedral complexes, | 2 | Chalk &
Talk | Black
Board | | 2.6 | Pi- bonding and M.O. theo Merits. | 1 | Discussion | Black
Board | | UNIT -3 | MECHANISM IN COORDINATIO | N COMPLI | EXES (15 | Hours) | | 3.1 | Kinetics of complexes – stability
– Kinetic and thermodynamic
stability | 2 | Chalk &
Talk | Black
Board | | 3.2 | Factors affecting stability and lability | 2 | Chalk &
Talk | Black
Board | | 3.3 | Stepwise and over all stability constants (determination not required) | 2 | Chalk &
Talk | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|------------------| | 3.4 | Mechanism of hydrolysis reactio in octahedral complexes. | 2 | Chalk &
Talk | Black
Board | | 3.5 | Mechanism of ligand substitut reaction in square plan complexes, Trans effect, trans effe in synthesis, Mechanism of tra effect. | | Chalk &
Talk | Power
point | | 3.6 | Spectroscopic states: L-S coupling & J-J coupling schemes. | 2 | Chalk &
Talk | Black
Board | |---------|--|-----------|-----------------|----------------| | 3.7 | Derivation of spectroscopicstates for free C-atom | 2 | Derivation | Black
Board | | UNIT -4 | ORGANOMETALLIC CHEMISTRY | Y (15Hour | ·s) | | | 4.1 | Preparation of metal carbonyls | 2 | Chalk &
Talk | Black
Board | | 4.2 | Ni(CO)4, Fe(CO)5, [V(CO)6], | 3 | Seminar | Black
Board | | 4.3 | Mn ₂ (CO) ₁₀ , Co ₂ (CO) ₈ and Fe ₂ (CO) ₉ . | 1 | Chalk &
Talk | Black
Board | | 4.4 | EAN calculation | 2 | Chalk &
Talk | Black
Board | | 4.5 | Metal nitrosyls –
sodium
nitroprusside and nitoso ferrous
sulphate. | 3 | Chalk &
Talk | Black
Board | | 4.6 | Ferrocene (structure based on VBT) | 4 | Chalk &
Talk | Black
Board | | UNIT-5 | 'F' BLOCK ELEMENTS (15Hou | rs) | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|----------------------------| | 5.1 | The lanthanide series electronic configuration, Oxidation states, spectral and magnetic properties of ce ³⁺ and yb ³⁺ | 4 | Chalk &
Talk | Black
Board | | 5.2 | Causes and consequences of lanthanide contraction | 1 | Chalk &
Talk | Black
Board | | 5.3 | Separation of lanthanides by fractional crystallization, solvent extraction, precipitation, change in oxidation state and Ion exchange chromatography | 3 | Chalk &
Talk | Black
Board &
Models | | 5.4 | The actinide series and electronic configuration | 3 | Chalk &
Talk | Black
Board | |-----|---|---|-----------------|----------------| | 5.5 | Extraction of Uranium from pitchblende and thorium from monazite. | 5 | Chalk &
Talk | Black
Board | ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|-------------------| | CO 1 | Know the structure and bonding of important coordination compounds | K1, K2, K3 &
K4 | PSO1& PSO2 | | CO 2 | Apply the rules to calculate the magnetic properties of complexes and how magnetic moments canbe employed for the interpretation of their structure | K1, K2, K3 &
K4 | PSO3 | | CO 3 | Get an overview about the reaction mechanism of metal complexes | K1, K2, K3 &
K4 | PSO5 | | CO 4 | Import the skills to elucidate the | K1, K2, K3 & | PSO7 | | | atmostrate and made of handing | 17.4 | | | | structure and mode of bonding | K4 | | |------|-------------------------------|--------------|------| | | in organometallic compounds | | | | | Gain knowledge about the | | PSO7 | | 60 F | chemistry of Lanthanides and | K1, K2, K3 & | | | CO 5 | Actinides | K4 | | | | | | | # **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO3 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO4 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | | CO5 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | **Mapping of COs with POs** | CO/ PSO | P01 | P02 | P03 | P04 | |---------|-----|-----|-----|-----| | CO1 | 3 | 3 | 1 | 2 | | CO2 | 3 | 3 | 2 | 2 | | CO3 | 3 | 2 | 2 | 2 | | CO4 | 3 | 2 | 2 | 2 | | CO5 | 3 | 2 | 2 | 2 | **Note**: ♦ Strongly Correlated – **3** ♦ Wakly Correlated -1 ◆ Moderately Correlated – 2 ## **COURSE DESIGNER:** - 3. Dr.A. Rajeswari - 4. Ms. RM Nagalakshmi ## 5% ## III B.Sc. CHEMISTRY 5SEMESTER –V ## For those who joined in 2019 onwards | PROGRAMM | COURSE | COURSE | CATEGOR | HRS/WEE | CREDIT | |----------|---------|------------------|----------|---------|--------| | E CODE | CODE | TITLE | Y | K | S | | UACH | 19C5ME1 | SPECTROSCO
PY | Elective | 5 | 5 | #### **COURSE DESCRIPTION** This course will focus on interpretation of spectra and application of these tools to address questions of structures. ## **COURSE OBJECTIVES** In this course the students are exposed to various spectroscopic techniques that are used in structural elucidation. This paper will be of much use of the students to take up higher studies. ## **UNITS** #### UNIT -I UV-VISIBLE SPECTROSCOPY (15HRS.) Introduction, Absorption laws – instrumentation. Types of electronic transitions Absorption and intensity shifts – solvents effects. λ max calculation using Woodward rules for dienes (Open chain and alicyclic) and unsaturated carbonyl compounds. **Self Study:** Applications of UV spectroscopy. ## **UNIT -II FT-IR SPECTROSCOPY** (15HRS.) Introduction, molecular vibrations vibrational frequency – Number of fundamental vibrations – Factors influencing vibrational frequencies – Instrumentation – Sampling technique Finger print region – skeletal and group vibrations. **Self Study:** Applications of FT-IR spectroscopy. ### UNIT -III 1H-NMR SPECTROSCOPY (15HRS.) Introduction, principle, Number of signals, position of signals(chemical shift) – shielding and deshielding effects. Factors influencing chemical shift. Instrumentation, Solvents used -peak area – splitting of the signals. Coupling constant (J) geminal Vicinal (cis&trans) and aromatic coupling (J- ortho, J-meta & J-para). **Self Study:** Applications of ¹H-NMR spectroscopy. ### UNIT -IV 13C AND ESR SPECTROSCOPY (15HRS.) Natural abundance of ¹³C – Resolution, multiplicity – H₁ decoupling – Noise decoupling. NOE Signal enhancement -broad bands – off resonance – proton decoupling. Chemical shifts for ¹³C in various kind of carbon. (sp³,sp², sp, hybridized carbon and carbonyl carbon) comparison of ¹³C NMR &PMR (elementary level). Introduction, Hyperfine splitting in Hydrogen atom, CH₃ free radicals, Benzene anion radical, bissalicylaldimine Copper(II)Complex. **Self Study:**Zero field splitting &Kramers's degeneracy. #### UNIT -V MASS SPECTROSCOPY (15HRS.) Basic principles, Instrumentation, Determination of molecular formula using nitrogen rule – Molecular ion peal – base peak (M+1), (M+2) peaks metastable peaks. General fragmentation modes, simple cleavage – Retro Diels Alder reaction. Hydrogen transfer rearrangements – McLafferty rearrangement, problems. **Self Study:**Applications in Mass spectroscopy. #### **REFERENCES:** - 1. Y.R. Sharma, Organic Spectroscopy, Fourth revised and enlarged Edn., 2007, S. Chand & Co. - 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, 3rd Edn., Vishal publishing Company. - 3. P. S. Kalsi, Stereochemistry of carbon compounds, 3rdEdn., New Age International Publishers, 1995. - 4. R. S. Drago, *Physical Methods in Chemistry*; Saunders: Philadelphia, 1977. - 5. C. N. Banwell and E. M. Mc Cash, *Fundamentals of Molecular Spectroscopy*, 4th Edn., Tata Mc Graw Hill, New Delhi, 2000. ## **COURSE CONTENTS & LECTURE SCHEDULE** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | | UNIT -1 UV-VISIBLE | SPECTROS | СОРУ | | | 1.1 | Introduction, Absorption laws | 2 | Chalk &
Talk | Black
Board | | 1.2 | Instrumentation | 1 | Chalk &
Talk | LCD | | 1.3 | Types of electronic transitions | 1 | Lecture | Black
Board | | 1.4 | Absorption and intensity shifts | 3 | Lecture | Black
Board | | 1.5 | Solvents effects | 3 | Lecture | Black
Board | | 1.6 | λmax calculation using
Woodward rules for dienes | 2 | Lecture | Chalk and
Talk | | 1.7 | λmax calculation using Woodward rules for Open chain and alicyclic compounds | 1 | Lecture | PPT &
White
board | | 1.8 | λmax calculation using Woodward rules for unsaturated carbonyl compounds. | 2 | Discussion | Black
Board | | | UNIT -2 FT-IR SPI | ECTROSCO | PY | | | 2.1 | Introduction | 1 | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | |---------------|--|--------------------|----------------------|-------------------------|--|--|--|--| | 2.2 | Molecular vibrations vibrational frequency | 2 | Chalk &
Talk | Green
Board | | | | | | 2.3 | Number of fundamental vibrations | 2 | Chalk &
Talk | Black
Board | | | | | | 2.4 | Factors influencing vibrational frequencies | 3 | Lecture | PPT &
White
board | | | | | | 2.5 | Instrumentation | 2 | Discussion | LCD | | | | | | 2.6 | Sampling technique Finger print region | 1 | Lecture | Black
Board | | | | | | 2.7 | Skeletal and group vibrations. | 4 | Lecture | PPT &
White
board | | | | | | | UNIT -3 ¹ H-NMR SPECTROSCOPY | | | | | | | | | 3.1 | Introduction, principle | 2 | Lecture | Black
Board | | | | | | 3.2 | Number of signals, position of signals (chemical shift). | 3 | Discussion | LCD | | | | | | 3.3 | Shielding and deshielding effects. | 3 | Lecture | PPT &
White
Board | | | | | | 3.4 | Factors influencing chemical shift. | 2 | Lecture | Black
Board | | | | | | 3.5 | Instrumentation | 1 | Discussion | LCD | | | | | | 3.6 | Solvents used -peak area - splitting of the signals. | 2 | Lecture | Black
Board | | | | | | 3.7 | Coupling constant (J) geminal Vicinal (cis&trans) | 1 | Lecture | Black
Board | | | | | | 3.8 | Aromatic coupling (J- ortho, J-meta & J-para). | 1 | Lecture | Black
Board | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|-------------------------| | | UNIT -4 ¹³ CAND ESR | SPECTROS | SCOPY | | | 4.1 | Natural abundance of ¹³ C – Resolution, multiplicity. | 1 | Lecture | Black
Board | | 4.2 | H_1 decoupling – Noise decoupling. | 3 | Chalk &
Talk | Green
Board | | 4.3 | NOE Signal enhancement -broad bands –
off resonance – proton decoupling. | | Chalk &
Talk | Black
Board | | 4.4 | Chemical shifts for ¹³ C in various kind of carbon. (sp ³ ,sp ² , sp, hybridized carbon and carbonyl carbon) | 3 | Lecture | PPT &
White
board | | 4.5 | Comparison of ¹³ C NMR &PMR (elementary level). | 1 | Discussion | LCD | | 4.6 | Introduction, Hyperfine splitting in Hydrogen atom | 1 | Lecture | Black
Board | | 4.7 | CH ₃ free radicals, Benzene anion radical | 2 | Lecture | PPT &
White
board | | 4.8 | bissalicylaldimine Copper(II) complex. | 2 | Lecture | Black
Board | | | UNIT -5 MASS SPI | ECTROSCO | PY | | | 5.1 | Basic principles,
Instrumentation | 2 | Lecture | Black
Board | | 5.2 | Determination of molecular formula using nitrogen rule | 2 | Chalk &
Talk | Green
Board | | 5.3 | Molecular ion peak – base peak (M+1), (M+2) peaks metastable peaks | 3 | Chalk &
Talk | Black
Board | | 5.4 | General fragmentation modes | 1 | Lecture | PPT &
White
board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|-------------------------------------|--------------------|----------------------|-------------------------| | 5.5 | Simple cleavage | 2 | Discussion | LCD | | 5.6 | Retro Diels Alder reaction | 1 | Lecture | Black
Board | | 5.7 | Hydrogentransfer
rearrangements | 2 | Lecture | PPT &
White
board | | 5.8 | McLafferty rearrangement, problems. | 2 | Lecture | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholasti
c Marks
C5 | CIA
Total | | |-----------------------|------------------------------|------------------------|----------------|---------------------|------------------------------|-----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5 Mks | 5+5=10
Mks. | 15 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 ½ | 7.5 | - | 7.5 | 18.75
% | | K2 | - | 5 | 4 | 2 1/2 | 11.5 | - | 11.5 | 28.75
% | | К3 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | K4 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | Non
Scholast
ic | - | - | - | - | | 5 | 5 | 12.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for: K1- Remember, K2-Understand, K3-Apply, K4-Analyse ## **EVALUATION PATTERN** | | SCHOLASTIC | | | NON -
SCHOLASTIC | | | | |-----------|------------|----|-----------|---------------------|---------|----|-------| | C1 | C2 | С3 | C4 | C 5 | CIA ESE | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests **C5** – Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |------|---|---|-------------------| | CO 1 | to calculate λmax values for different organic molecules and to identify the systems using UV spectroscopy. | K1, K2,K3
&K4 | PSO1& PSO2 | | CO 2 | to identify various functional groups present in organic molecules using IR frequency. | | PSO3 | | CO 3 | to predict the number and nature of protons/ carbons in organic moleculesin ¹ H-NMR/ ¹³ C-NMR spectroscopy. | K1, K2,K3
&K4 | PSO5 | | CO 4 | to study the structures of systems with unpaired electrons using ESR spectroscopy. | | PSO3 | | CO 5 | to findoutthe mass of the molecule and to arrive at the formulae of the molecules using fragmentation patterns. | K1, K2,K3 | PSO2 | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | | CO2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | | CO3 | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | | CO4 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | ### Mapping of COs with Pos | CO/ PSO | P01 | P02 | P03 | P04 | |---------|-----|-----|-----|-----| | CO1 | 3 | 2 | 1 | 1 | | CO2 | 2 | 3 | 1 | 1 | | CO3 | 3 | 2 | 1 | 1 | | CO4 | 2 | 3 | 1 | 1 | | CO5 | 3 | 2 | 1 | 1 | **Note**: ♦ Strongly Correlated – **3** ♦ WeaklyCorrelated -1 ♦ Moderately Correlated - 2 **COURSE DESIGNER:** 1.Dr.M.Priyadharsani 2.Dr.V.Aruldeepa Forwarded By **HOD'S Signature** S-Tedora. ## III B.Sc. CHEMISTRY SEMESTER –V ### For those who joined in 2021 onwards | PROGRAMM | COURSE | COURSE | CATEGOR | HRS/WEE | CREDIT | |----------|---------|------------------|----------|---------|--------| | E CODE | CODE | TITLE | Y | K | S | | UACH | 19C5ME1 | SPECTROSCO
PY | Elective | 5 | 5 | #### **COURSE DESCRIPTION** This course will focus on interpretation of spectra and application of these tools to address questions of structures. ### **COURSE OBJECTIVES** In this course the students are exposed to various spectroscopic techniques that are used in structural elucidation. This paper will be of much use of the students to take up higher studies. ### UNITS ### UNIT -I UV-VISIBLE SPECTROSCOPY (15HRS.) Introduction, Absorption laws – instrumentation. Types of electronic transitions Absorption and intensity shifts – solvents effects. λ max calculation using Woodward rules for dienes (Open chain and alicyclic) and unsaturated carbonyl compounds. Basic Problems only **Self Study:** Applications of UV spectroscopy. ### UNIT -II FT-IR SPECTROSCOPY (15HRS.) Introduction, molecular vibrations vibrational frequency – Number of fundamental vibrations – Factors influencing vibrational frequencies – Instrumentation – Sampling technique Finger print region – skeletal and group vibrations. Problems involving small molecules only **Self Study:** Applications of FT-IR spectroscopy. ### UNIT -III 1H-NMR SPECTROSCOPY (15HRS.) Introduction, principle, Number of signals, position of signals(chemical shift) – shielding and deshielding effects. Factors influencing chemical shift. Instrumentation, Solvents used -peak area – splitting of the signals. Coupling constant (J) geminal Vicinal (cis&trans) and aromatic coupling (J- ortho, J-meta & J-para). Problems involving small molecules only **Self Study:** Applications of ¹H-NMR spectroscopy. ### UNIT -IV 13C AND ESR SPECTROSCOPY (15HRS.) Natural abundance of ¹³C – Resolution, multiplicity – H₁ decoupling – Noise decoupling. NOE Signal enhancement -broad bands – off resonance – proton decoupling. Chemical shifts for ¹³C in various kind of carbon. (sp³,sp², sp, hybridized carbon and carbonyl carbon) comparison of ¹³C NMR &PMR (elementary level). Introduction, Hyperfine splitting in Hydrogen atom, CH₃ free radicals, Benzene anion radical, bissalicylaldimine Copper(II)Complex. **Self Study:**Zero field splitting &Kramers's degeneracy. ### **UNIT -V MASS SPECTROSCOPY** (15HRS.) Basic principles, Instrumentation, Determination of molecular formula using nitrogen rule – Molecular ion peal – base peak (M+1), (M+2) peaks metastable peaks. General fragmentation modes, simple cleavage – Retro Diels Alder reaction. Hydrogen transfer rearrangements – McLafferty rearrangement, problems. Problems involving simple fragmentation (150-200) with Nitrogen and halogen functional groups. **Self Study:**Applications in Mass spectroscopy. #### **REFERENCES:** - 6. Y.R. Sharma, Organic Spectroscopy, Fourth revised and enlarged Edn., 2007, S. Chand & Co. - 7. Puri, Sharma &Pathania, Principles of Physical Chemistry, 3rd Edn., Vishal publishing Company. - 8. P. S. Kalsi, Stereochemistry of carbon compounds, 3rdEdn., New Age International Publishers, 1995. - 9. R. S. Drago, *Physical Methods in Chemistry*; Saunders: Philadelphia, 1977. - 10. C. N. Banwell and E. M. Mc Cash, *Fundamentals of Molecular Spectroscopy*, 4th Edn., Tata Mc Graw Hill, New Delhi, 2000. ### **COURSE CONTENTS & LECTURE SCHEDULE** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | |---------------|--|--------------------|----------------------|-------------------------|--|--|--|--| | | UNIT -1 UV-VISIBLE | SPECTROS | СОРУ | | | | | | | 1.1 | Introduction, Absorption laws | 2 | Chalk &
Talk | Black
Board | | | | | | 1.2 | Instrumentation | 1 | Chalk &
Talk | LCD | | | | | | 1.3 | Types of electronic transitions | 1 | Lecture | Black
Board | | | | | | 1.4 | Absorption and intensity shifts | 3 | Lecture | Black
Board | | | | | | 1.5 | Solvents effects | 3 | Lecture | Black
Board | | | | | | 1.6 | λmax calculation using Woodward rules for dienes | 2 | Lecture | Chalk and
Talk | | | | | | 1.7 | λmax calculation using
Woodward rules for Open chain
and alicyclic compounds | 1 | Lecture | PPT &
White
board | | | | | | 1.8 | λmax calculation using Woodward rules for unsaturated carbonyl compounds. | 2 | Discussion | Black
Board | | | | | | | UNIT -2 FT-IR SPECTROSCOPY | | | | | | | | | 2.1 | Introduction | 1 | Lecture | Black
Board | |-----|--------------|---|---------|----------------| | | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | 2.2
 Molecular vibrations vibrational frequency | 2 | Chalk &
Talk | Green
Board | | 2.3 | Number of fundamental vibrations | 2 | Chalk &
Talk | Black
Board | | 2.4 | Factors influencing vibrational frequencies | 3 | Lecture | PPT &
White
board | | 2.5 | Instrumentation | 2 | Discussion | LCD | | 2.6 | Sampling technique Finger print region | 1 | Lecture | Black
Board | | 2.7 | Skeletal and group vibrations. | 4 | Lecture | PPT &
White
board | | | UNIT -3 ¹ H-NMR SF | PECTROSC | ОРҮ | | | 3.1 | Introduction, principle | 2 | Lecture | Black
Board | | 3.2 | Number of signals, position of signals (chemical shift). | 3 | Discussion | LCD | | 3.3 | Shielding and deshielding effects. | 3 | Lecture | PPT &
White
Board | | 3.4 | Factors influencing chemical shift. | 2 | Lecture | Black
Board | | 3.5 | Instrumentation | 1 | Discussion | LCD | | 3.6 | Solvents used -peak area - splitting of the signals. | 2 | Lecture | Black
Board | | 3.7 | Coupling constant (J) geminal Vicinal (cis&trans) | 1 | Lecture | Black
Board | | 3.8 | Aromatic coupling (J- ortho, J-meta & J-para). | 1 | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|-------------------------| | | UNIT -4 ¹³ CAND ESR | SPECTROS | SCOPY | | | 4.1 | Natural abundance of ¹³ C – Resolution, multiplicity. | 1 | Lecture | Black
Board | | 4.2 | H_1 decoupling – Noise decoupling. | 3 | Chalk &
Talk | Green
Board | | 4.3 | NOE Signal enhancement -broad bands – off resonance – proton decoupling. | | Chalk &
Talk | Black
Board | | 4.4 | Chemical shifts for ¹³ C in various kind of carbon. (sp ³ ,sp ² , sp, hybridized carbon and carbonyl carbon) | 3 | Lecture | PPT &
White
board | | 4.5 | Comparison of ¹³ C NMR &PMR (elementary level). | 1 | Discussion | LCD | | 4.6 | Introduction, Hyperfine splitting in Hydrogen atom | 1 | Lecture | Black
Board | | 4.7 | CH ₃ free radicals, Benzene anion radical | 2 | Lecture | PPT &
White
board | | 4.8 | bissalicylaldimine Copper(II) complex. | 2 | Lecture | Black
Board | | | UNIT -5 MASS SPI | ECTROSCO | PY | | | 5.1 | Basic principles,
Instrumentation | 2 | Lecture | Black
Board | | 5.2 | Determination of molecular formula using nitrogen rule | 2 | Chalk &
Talk | Green
Board | | 5.3 | Molecular ion peak – base peak (M+1), (M+2) peaks metastable peaks | 3 | Chalk &
Talk | Black
Board | | 5.4 | General fragmentation modes | 1 | Lecture | PPT &
White
board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|-------------------------------------|--------------------|----------------------|-------------------------| | 5.5 | Simple cleavage | 2 | Discussion | LCD | | 5.6 | Retro Diels Alder reaction | 1 | Lecture | Black
Board | | 5.7 | Hydrogentransfer
rearrangements | 2 | Lecture | PPT &
White
board | | 5.8 | McLafferty rearrangement, problems. | 2 | Lecture | Black
Board | ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |------|---|---|-------------------| | CO 1 | to calculate λ max values for different organic molecules and to identify the systems using UV spectroscopy. | K1, K2,K3
&K4 | PSO1& PSO2 | | CO 2 | to identify various functional groups present in organic molecules using IR frequency. | | PSO3 | | CO 3 | to predict the number and nature of protons/ carbons in organic moleculesin ¹ H-NMR/ ¹³ C-NMR spectroscopy. | | PSO5 | | CO 4 | to study the structures of systems with unpaired electrons using ESR spectroscopy. | | PSO3 | | | | to findoutthe mass of the molecule | | PSO2 | |---|----|--|------------------|------| | C | 05 | and to arrive at the formulae of the molecules using fragmentation patterns. | K1, K2,K3
&K4 | | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | | CO2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | | CO3 | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | | CO4 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | ## **Mapping of COs with Pos** | CO/ PSO | P01 | PO2 | P03 | PO4 | |---------|-----|-----|-----|-----| | CO1 | 3 | 2 | 1 | 1 | | CO2 | 2 | 3 | 1 | 1 | | CO3 | 3 | 2 | 1 | 1 | | CO4 | 2 | 3 | 1 | 1 | | CO5 | 3 | 2 | 1 | 1 | Note: ◆ Strongly Correlated – 3 ◆ WeaklyCorrelated -1 ♦ Moderately Correlated – 2 **COURSE DESIGNER:** 1.Dr.M.Priyadharsani 2.Dr.V.Aruldeepa Forwarded By **HOD'S Signature** 20% ## III B.Sc. CHEMISTRY SEMESTER -VI ### For those who joined in 2019 onwards | PROGRAMME
CODE | COURSE
CODE | COURSE
TITLE | CATEGORY | HRS/WEE
K | CREDITS | |-------------------|----------------|------------------------------|------------|--------------|---------| | UACH | 19C6CC17 | ORGANIC
CHEMISTRY
– IV | Major Core | 5 | 4 | ### **COURSE DESCRIPTION** This paper includes the topics, Polynuclear Hydrocarbons, Heterocyclic Compounds, Amino Acids and Proteins, Terpenes and Alkaloids. ### **COURSE OBJECTIVES** In this course the students are exposed to develop efficient, synthetic methods in organic chemistry. And to be familiar with properties and reactions of most important poly nuclear hydrocarbons, heterocyclic compounds, amino acids, peptides, proteins. And gain advanced knowledge and understanding in aspect of alkaloids and terpenes. ### **UNITS** ### **UNIT I. POLY NUCLEAR HYDROCARBONS** (15 ### Hrs.) Structure of Naphthalene, aromaticity, preparation-Haworth and Fitting's synthesis. Chemical properties- reduction, oxidation, electrophilic substitution. Derivatives of naphthalene 1- Naphthol and 2- Naphthol – Preparation and chemical properties. 1-Naphthylamine and 2-Naphthylamine, Preparation- Bucherer reaction, and Chemical properties. Naphthaguinone- Preparation and properties of 1, 2-Naphthaquinone, 1,4-Naphthaquinoneand 2,6-Naphthaquinone, Naphthoic acids. Structure of Anthracene, aromaticity, preparation- Fridel-Crafts reaction. Chemical properties- Electrophilic substitution, oxidation, reduction and Diels –Alder reaction. Preparation and property of 9,10-Anthraquinone. Preparation- Pschorr and Haworth synthesis and properties of Phenanthrene. Preparation and property and phenanthra quinone. Fused polynuclear heterocyclic systems- Quinoline and Isoquinoline-Preparation of quinoline –Skraup's and Friedlander's synthesis, Chemical properties of quinoline- electrophilic, nucleophilic substitution, oxidation, and reductions reactions. Preparation of isoquinoline –Bischler-Napieralski reaction, and chemical properties. (15 ## UNIT II. HETEROCYCLIC COMPOUNDS Hrs.) Introduction, numbering the position in heterocyclic compounds. Five membered heterocyclic compounds of pyrrole, furan, thiophene. Structure and aromaticity, general methods of preparations of pyrrole, furan, thiophene, Preparation of pyrrole (Knorr-pyrrole, Hanstzchsynthesis), Chemical properties of pyrrole, furan, thiophene-electrophilic substitution, reduction reactions, Kolbes-Schmitt reaction in pyrrole and Diels-Alder reaction of furan. Comparison of reactivity of furan, pyrrole and thiophene. Six- membered heterocyclic compound – Pyridine- Structure aromaticity and basicity. Preparation and Chemical properties of pyridine-electrophilic, nucleophilic substitution and reduction reactions. Indole-preparation- Fischer's indole, Madelung, Reissert synthesis. Electrophilic substitution and reduction reactions. Five membered heterocyclic containingtwo hetero atoms: Pyrazole ### UNIT III. AMINO ACIDS AND PROTEINS (15 Hrs.) Amino acids – Classification based on chemical structure and on nutrition importance, Stereochemistry of amino acids - methods of preparation- Perkin et al., Gabriel phthalimide, Strecker, Malonicester, The Darapsky, and Erlenmeyer azalctone synthesis. Physical properties - Zwitterions and isoelectric points. Chemical properties- Reactions due to amino groups, Reactions due to carboxylic group and reactions due to both - NH_2 and -COOH groups. Peptides and their synthesis- Use of protecting group in synthesis of polypeptides, protection of amino group, synthesis of peptide using protected amino and carboxylic acid ends, and Merrifield solid phase polypeptide synthesis. End group Analysis - N- terminal - DNP, Dansyl methods and Edman's degradation. C- terminal- Carboxypeptidase and Kumpfs method. Primary, Secondary and Tertiary structure of proteins. Colour reactions of proteins and denaturation of proteins - Fibrous & globular proteins. #### **UNIT IV.TERPENES** (15Hrs.) Introduction, Occurrence classification, Isolation, general properties, isoprene and special isoprene rule. Gemdialkylerule. Structure, synthesis of Citral, Limonene and Camphor, Zingiberene. ### UNIT V. ALKALOIDS (15Hrs.) Definition. occurrence. extraction and general methods determining structure-functional the nature of oxygen, Nitrogen, Kuhnroth method for estimation of C-methyl Herzigmayer and group.Degradation of alkaloids- Hofmann exhaustive methylation, Emde's degradation, Von Braun's.Reductive degradation, alkali fusion and oxidation. Structure and synthesis of Coniine, Piperine, Nicotine and Quinine. ### Text Books ### Unit I ,II andIII - I.L.Finar Organic
Chemistry Vol II, 5thEdn, ELBS &Longmann group Ltd. - 2. I.L FinarOrganic ChemistryVol. I –, 6thEdn., ELBS &Longmann group Ltd. 3. BhupinderMetha and Manjumetha – organic chemistry-Fifth printing Published by Asoke. K.Ghosh ### **Unit IV** 1. GurdeepR.Chatwal Organic chemistry of Natural products Vol.II, 5thEdn, Himalaya publishing housePvt.ltd. ### Unit V 1. Gurdeep .R.Chatwal Organic chemistry of Natural products Vol.I, 4thEdn, Himalaya publishing house Pvt.ltd. ### **COURSE CONTENTS & LECTURE SCHEDULE** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | |---------------|---|--------------------|----------------------|------------------|--|--|--|--|--| | | UNIT I. POLY NUCLEAR HYDROCARBONS | | | | | | | | | | 1.1 | Structure of Naphthalene, aromaticity, preparation-Haworth and Fitting's synthesis. | 2 | Chalk &
Talk | Black
Board | | | | | | | 1.2 | Chemical properties- reduction, oxidation, electrophilic substitution. Derivatives of naphthalene 1- Naphthol and 2- Naphthol – Preparation and chemical properties. | 1 | Chalk &
Talk | LCD | | | | | | | 1.3 | Preparation and chemical properties of 1-Naphthylamine and 2-Naphthylamine, Bucherer reaction, and Chemical properties. Naphthaquinone- Preparation and properties of 1, 2-Naphthaquinone | 1 | Lecture | Black
Board | | | | | | | 1.4 | Preparation and properties of
1,4- Naphthaquinone and 2,6-
Naphthaquinone, Naphthoic
acids, Structure of Anthracene, | 3 | Lecture | Black
Board | | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | | aromaticity, preparation- | | | | | | Fridel-Crafts reaction.Chemical | | | | | | properties-Electrophilic | | | | | | substitution. | | | | | | oxidation, reduction and Diels | | | | | | -Alder reaction. Preparation | | | | | | and property of 9,10- | | | | | | Anthraquinone. Preparation- | | | | | 1.5 | Pschorr and Haworth synthesis | 3 | Lecture | Black | | | and properties of | _ | | Board | | | Phenanthrene. Preparation and | | | | | | property and | | | | | | phenanthraquinone. | | | | | | | | | | | 1.6 | Preparation of quinoline – Skraup's and Friedlander's synthesis, Chemical properties of quinolone. | l <i>1</i> . I | Lecture | Chalk
and Talk | | 1.7 | electrophilic,nucleophilic
substitution, oxidation, and
reductions reactions. | 1 | Lecture | PPT &
White
board | | | Preparation of isoquinoline - | | | Dlask | | 1.8 | Bischler-Napieralski reaction, | 2 | Discussion | Black
Board | | | and chemical properties. | | | | | UNIT II. | HETEROCYCLIC COMPOUNDS | | | (12 Hrs) | | 2.1 | Introduction, numbering the position in heterocyclic compounds. | 1 | Lecture | Black
Board | | 2.2 | Structure and aromaticity,general methods of preparations ofpyrrole, | 3 | Chalk &
Talk | Green
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|------------------------|-------------------------| | | Preparation of pyrrole (Knorr-pyrrole, Hanstzchsyntesis), | | | | | 2.3 | Structure and aromaticity,general methods of preparations offuran, thiophene, | 2 | Chalk &
Talk | Black
Board | | 2.4 | Chemical properties of pyrrole, furan, thiophene- electrophilic substitution, reduction reactions, | 1 | Lecture | PPT &
White
board | | 2.5 | Kolbes-Schmitt reaction in pyrrole and Diels-Alder reaction of furan.Comparison of reactivity of furan, pyrrole and thiophene. | 2 | Lecture
&Discussion | Black
Board
&LCD | | 2.6 | Six- membered heterocyclic compound – Pyridine- Structure aromaticity and basicity.Preparation, | | Lecture | Black
Board | | 2.7 | Chemical properties of pyridine- electrophilic, nucleophilic substitution and reduction reactions.Indole-preparation- Fischer's indole, Madelung, Reissert synthesis.Electrophilic substitution and reduction reactions.Five membered heterocyclics containing two hetero atoms: Pyrazole | 4 | Lecture | PPT
&Black
Board | | | UNIT III. AMINO ACIDS | AND PRO | TEINS | | | 3.1 | Amino acids – Classification based on chemical structure and on nutrition importance | | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | |---------------|---|--------------------|-------------------------|-------------------------|--|--|--|--| | 3.2 | Stereochemistry of amino acids - methods of preparation- Perkin et al., Gabriel phthalimide of amino acids. | 2 | Chalk &
Talk | Black
Board
&LCD | | | | | | 3.3 | Strecker, Malonicester, The Darapsky, and Erlenmeyer azalctone synthesis of amino acids. | | Chalk &
Talk | PPT &
White
Board | | | | | | 3.4 | Physical properties - Zwitterions and isoelectric points. Chemical properties- Reactions due to amino groups | 3 | Chalk &
Talk | Black
Board | | | | | | 3.5 | Reactions due to carboxylic group and reactions due to both -NH ₂ and -COOH groups. | 2 | Chalk &
Talk | Black
Board
&LCD | | | | | | 3.6 | Use of protecting group in synthesis of polypetides, protection of amino group, synthesis of peptide using protected amino and carboxlic acid ends. | 1 | Lecture | Black
Board | | | | | | 3.7 | Merrifield solid phase polypeptide synthesis. End group Analysis - N- terminal - DNP, Dansyl methods and Edman's degradation. | 2 | Chalk &
Talk | Black
Board | | | | | | 3.8 | C- terminal- Carboxypeptidase and Kumpfs method. Primary, Secondary and Tertiary structure of proteins. Colour reactions of proteins and denaturation of proteins – Fibrous & globular proteins | | Lecture &
Discussion | Black
Board&
LCD | | | | | | | UNIT -4 TERPENES | | | | | | | | | 4.1 | Introduction, Occurrence classification, Isolation. | 2 | Lecture | Black
Board | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------------|-------------------------| | 4.2 | general properties. | 1 | Chalk &
Talk | Green
Board | | 4.3 | Isopreneand special isoprene rule. Gemdialkylerule.Structure,synthesis of Citral, | 3 | Chalk &
Talk | Black
Board | | 4.4 | Structure,synthesis of
Limonene | 2 | Chalk &
Talk | Black
Board | | 4.5 | Structure, synthesis of Limonene , Camphor. | 1 | Chalk &
Talk | Black
Board | | 4.6 | Structure,synthesis of Camphor. | 1 | Chalk &
Talk
Lecture | Black
Board | | 4.7 | Structure,synthesis of Camphor, Zingiberene. | 3 | Chalk &
Talk
Lecture | PPT &
White
board | | 4.8 | Structure, synthesis of Zingiberene. | 2 | Chalk &
Talk
Lecture | Black
Board | | | UNIT -5 ALI | KALOIDS | | | | 5.1 | Definition, occurrence | 1 | Lecture | Black
Board | | 5.2 | extraction and general methods for determining the structure-functional nature of oxygen, Nitrogen. | 2 | Chalk &
Talk | Green
Board | | 5.3 | Herzigmayer and Kuhnroth method for estimation of C-methyl group. | 3 | Chalk &
Talk | Black
Board | | 5.4 | Degradation of alkaloids-
Hofmannexhaustive
methylation,Emde's
degradation, Von Braun's. | 2 | Chalk &
Talk | White
board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------------|------------------| | 5.5 | Reductive degradation,alkali fusion and oxidation. | 2 | Discussion | LCD | | 5.6 | Structure and synthesis of Coniine. | 1 | Chalk &
Talk
Lecture | Black
Board | | 5.7 | Structure and synthesis of Piperine, Nicotine. | 2 | Chalk &
Talk | White
board | | 5.8 | Structure and synthesis of Quinine. | 2 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholasti
c Marks
C5 | CIA
Total | | |-----------------|------------------------------|------------------------|----------------|---------------------|------------------------------|-----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5 Mks | 5+5=10
Mks. | 15 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 ½ | 7.5 | - | 7.5 | 18.75
% | | К2 | - | 5 | 4 | 2 ½ | 11.5 | - | 11.5 | 28.75
% | | К3 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | K4 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | Non
Scholast | - | - | - | - | | 5 | 5 | | | ic | | | | | | | | 12.5 % | |-------|---|---|----|----|----|---|----|--------| | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIAcomponents. - \checkmark The levels of CIA Assessment based on Revised Bloom's Taxonomy for: K1- Remember, K2-Understand, K3-Apply,
K4-Analyse ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | | MARKS | | | |------------|-----------|----|---------------------|----|-------|-----|-------| | C1 | C2 | С3 | C4 | С5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |------|--|---|-------------------| | | To develop novel, efficient, | | PSO1& PSO2 | | CO 1 | convenient, selective synthetic methods in organic chemistry. | K1 | | | | To get familiar with particular | | PSO3 | | CO 2 | properties and reactions for the most | K1, K2 | | | 00 = | important heterocyclic as well as | 112, 112 | | | , | different systems of nomenclature. To fully comprehend the chemistry of | | | | CO 3 | amino acids, peptides, proteins. | K1 & K3 | PSO5 | | | | | | | | To provide an advanced | | PSO1 | | CO 4 | understanding of the core principles | K1, K2 & K3 | | | | and topics of chemistry of natural products. | | | | | To demonstrate advanced knowledge | | PSO1 | | CO 5 | and understanding in aspect of | K2 & K4 | | | | alkaloids. | | | | | | | | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | | CO2 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO3 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | | CO4 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | | | | | | | | | ## **Mapping of COs with POs** | CO/
PSO | P01 | PO2 | P03 | P04 | |------------|-----|-----|-----|-----| | CO1 | 3 | 3 | 2 | 2 | | CO2 | 3 | 3 | 1 | 1 | | CO3 | 3 | 3 | 1 | 2 | | CO4 | 3 | 3 | 1 | 2 | | CO5 | 3 | 3 | 2 | 1 | **Note**: Strongly Correlated – **3** Moderately Correlated – **2** Weakly Correlated -**1** COURSE DESIGNER: Dr.Sr.ArulMary.J **NEW** ## III B.Sc. CHEMISTRY SEMESTER -VI ### For those who joined in 2021 onwards | PROGRAMME
CODE | COURSE
CODE | COURSE
TITLE | CATEGORY | HRS/WEE
K | CREDITS | |-------------------|----------------|------------------------------|------------|--------------|---------| | UACH | 19C6CC17 | ORGANIC
CHEMISTRY
– IV | Major Core | 5 | 4 | #### **COURSE DESCRIPTION** This paper includes the topics, Polynuclear Hydrocarbons, Heterocyclic Compounds, Amino Acids and Proteins, Terpenes and Alkaloids. ### **COURSE OBJECTIVES** In this course the students are exposed to develop efficient, synthetic methods in organic chemistry. And to be familiar with properties and reactions of most important poly nuclear hydrocarbons, heterocyclic compounds, amino acids, peptides, proteins. And gain advanced knowledge and understanding in aspect of alkaloids and terpenes. ### **UNITS** ### **UNIT I. POLY NUCLEAR HYDROCARBONS** (15 ### Hrs.) Structure of Naphthalene, aromaticity, preparation-Haworth and Fitting's synthesis. Chemical properties- reduction, oxidation, electrophilic substitution. Derivatives of naphthalene 1- Naphthol and 2- Naphthol – Preparation and chemical properties. 1-Naphthylamine and 2-Naphthylamine, Preparation- Bucherer reaction, and Chemical properties. ### Naphthaquinone- Preparation and properties of 1, 2-Naphthaquinone, 1,4-Naphthaquinoneand 2,6-Naphthaquinone, Naphthoic acids. Structure of Anthracene, aromaticity, preparation- Fridel-Crafts reaction. Chemical properties- Electrophilic substitution, oxidation, reduction and Diels –Alder reaction. Preparation and property of 9,10-Anthraquinone. Preparation- Pschorr and Haworth synthesis and properties of Phenanthrene. Preparation and property and phenanthra quinone. Fused polynuclear heterocyclic systems- Quinoline and Isoquinoline-Preparation of quinoline –Skraup's and Friedlander's synthesis, Chemical properties of quinoline- electrophilic, nucleophilic substitution, oxidation, and reductions reactions. Preparation of isoquinoline –Bischler-Napieralski reaction, and chemical properties. ## UNIT II. HETEROCYCLIC COMPOUNDS Hrs.) (15 Introduction, numbering the position in heterocyclic compounds. Five membered heterocyclic compounds of pyrrole, furan, thiophene. Structure and aromaticity, general methods of preparations of pyrrole, furan, thiophene, Preparation of pyrrole (Knorr-pyrrole, Hanstzchsynthesis), Chemical properties of pyrrole, furan, thiophene-electrophilic substitution, reduction reactions, Kolbes-Schmitt reaction in pyrrole and Diels-Alder reaction of furan. Comparison of reactivity of furan, pyrrole and thiophene. Six- membered heterocyclic compound – Pyridine- Structure aromaticity and basicity. Preparation and Chemical properties of pyridine-electrophilic, nucleophilic substitution and reduction reactions. Indole-preparation- Fischer's indole, Madelung, Reissert synthesis. Electrophilic substitution and reduction reactions. Five membered heterocyclic containingtwo hetero atoms: Pyrazole ### UNIT III. AMINO ACIDS AND PROTEINS (15 Hrs.) Amino acids – Classification based on chemical structure and on nutrition importance, Stereochemistry of amino acids - methods of preparation- Perkin et al., Gabriel phthalimide, Strecker, Malonicester, The Darapsky, and Erlenmeyer azalctone synthesis. Physical properties - Zwitterions and isoelectric points. Chemical properties- Reactions due to amino groups, Reactions due to carboxylic group and reactions due to both - NH_2 and -COOH groups. Peptides and their synthesis- Use of protecting group in synthesis of polypeptides, protection of amino group, synthesis of peptide using protected amino and carboxylic acid ends, and Merrifield solid phase polypeptide synthesis. End group Analysis - N- terminal - DNP, Dansyl methods and Edman's degradation. C- terminal- Carboxypeptidase and Kumpfs method. Primary, Secondary and Tertiary structure of proteins. Colour reactions of proteins and denaturation of proteins - Fibrous & globular proteins. ### **UNIT IV.TERPENES** (15Hrs.) Introduction, Occurrence classification, Isolation, general properties, isoprene and special isoprene rule. Gemdialkylerule. Structure, synthesis of Citral, Limonene and Camphor, Zingiberene. ### UNIT V. ALKALOIDS (15Hrs.) Definition, occurrence, extraction and general methods determining structure-functional the nature of oxygen, Nitrogen, Kuhnroth method for estimation of C-methyl Herzigmayer and group.Degradation of alkaloids- Hofmann exhaustive methylation, Emde's degradation, Von Braun's.Reductive degradation, alkali fusion and oxidation. Structure and synthesis of Coniine, Piperine, Nicotine and Quinine. ### Text Books ### Unit I ,II andIII - 4. I.L.Finar Organic Chemistry Vol II, 5thEdn, ELBS &Longmann group Ltd. - 5. I.L FinarOrganic ChemistryVol. I –, 6thEdn., ELBS &Longmann group Ltd. 6. BhupinderMetha and Manjumetha – organic chemistry-Fifth printing Published by Asoke. K.Ghosh ### **Unit IV** 1. GurdeepR.Chatwal Organic chemistry of Natural products Vol.II, 5thEdn, Himalaya publishing housePvt.ltd. ### Unit V 2. Gurdeep .R.Chatwal Organic chemistry of Natural products Vol.I, 4thEdn, Himalaya publishing house Pvt.ltd. ### **COURSE CONTENTS & LECTURE SCHEDULE** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|------------------| | | UNIT I. POLY NUCLEAR | HYDROCA | RBONS | | | 1.1 | Structure of Naphthalene, aromaticity, preparation-Haworth and Fitting's synthesis. | 2 | Chalk &
Talk | Black
Board | | 1.2 | Chemical properties- reduction, oxidation, electrophilic substitution. Derivatives of naphthalene 1- Naphthol and 2- Naphthol – Preparation and chemical properties. | 1 | Chalk &
Talk | LCD | | 1.3 | Preparation and chemical properties of 1-Naphthylamine and 2-Naphthylamine, Bucherer reaction, and Chemical properties. Naphthaquinone- Preparation and properties of 1, 2-Naphthaquinone | 1 | Lecture | Black
Board | | 1.4 | Preparation and properties of
1,4- Naphthaquinone and 2,6-
Naphthaquinone, Naphthoic
acids, Structure of Anthracene, | 3 | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | | aromaticity, preparation- | | | | | | Fridel-Crafts reaction.Chemical | | | | | | properties-Electrophilic | | | | | | substitution. | | | | | | oxidation, reduction and Diels | | | | | | -Alder reaction. Preparation | | | | | | and property of 9,10- | | | | | | Anthraquinone. Preparation- | | | | | 1.5 | Pschorr and Haworth synthesis | 3 | Lecture | Black | | | and properties of | _ | | Board | | | Phenanthrene. Preparation and | | | | | | property and | | | | | | phenanthraquinone. | | | | | | | | | | | 1.6 | Preparation of quinoline – Skraup's and Friedlander's synthesis, Chemical properties of quinolone. | l <i>1</i> . I | Lecture | Chalk
and Talk | | 1.7 | electrophilic,nucleophilic
substitution, oxidation, and
reductions reactions. | 1 | Lecture | PPT &
White
board | | | Preparation of isoquinoline – | | | Dlask | | 1.8 | Bischler-Napieralski reaction, | 2 | Discussion | Black
Board | | | and chemical properties. | | | | | UNIT II. | HETEROCYCLIC COMPOUNDS | | | (12 Hrs) | | 2.1 |
Introduction, numbering the position in heterocyclic compounds. | 1 | Lecture | Black
Board | | 2.2 | Structure and aromaticity,general methods of preparations ofpyrrole, | 3 | Chalk &
Talk | Green
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|------------------------|-------------------------| | | Preparation of pyrrole (Knorr-pyrrole, Hanstzchsyntesis), | | | | | 2.3 | Structure and aromaticity,general methods of preparations offuran, thiophene, | 2 | Chalk &
Talk | Black
Board | | 2.4 | Chemical properties of pyrrole, furan, thiophene- electrophilic substitution, reduction reactions, | 1 | Lecture | PPT &
White
board | | 2.5 | Kolbes-Schmitt reaction in pyrrole and Diels-Alder reaction of furan.Comparison of reactivity of furan, pyrrole and thiophene. | 2 | Lecture
&Discussion | Black
Board
&LCD | | 2.6 | Six- membered heterocyclic compound – Pyridine- Structure aromaticity and basicity.Preparation, | | Lecture | Black
Board | | 2.7 | Chemical properties of pyridine- electrophilic, nucleophilic substitution and reduction reactions.Indole-preparation- Fischer's indole, Madelung, Reissert synthesis.Electrophilic substitution and reduction reactions.Five membered heterocyclics containing two hetero atoms: Pyrazole | 4 | Lecture | PPT
&Black
Board | | | UNIT III. AMINO ACIDS | AND PRO | TEINS | | | 3.1 | Amino acids – Classification based on chemical structure and on nutrition importance | | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|-------------------------|-------------------------| | 3.2 | Stereochemistry of amino acids - methods of preparation- Perkin et al., Gabriel phthalimide of amino acids. | 2 | Chalk &
Talk | Black
Board
&LCD | | 3.3 | Strecker, Malonicester, The Darapsky, and Erlenmeyer azalctone synthesis of amino acids. | | Chalk &
Talk | PPT &
White
Board | | 3.4 | Physical properties - Zwitterions and isoelectric points. Chemical properties- Reactions due to amino groups | 3 | Chalk &
Talk | Black
Board | | 3.5 | Reactions due to carboxylic group and reactions due to both -NH ₂ and -COOH groups. | 2 | Chalk &
Talk | Black
Board
&LCD | | 3.6 | Use of protecting group in synthesis of polypetides, protection of amino group, synthesis of peptide using protected amino and carboxlic acid ends. | 1 | Lecture | Black
Board | | 3.7 | Merrifield solid phase polypeptide synthesis. End group Analysis - N- terminal - DNP, Dansyl methods and Edman's degradation. | 2 | Chalk &
Talk | Black
Board | | 3.8 | C- terminal- Carboxypeptidase and Kumpfs method. Primary, Secondary and Tertiary structure of proteins. Colour reactions of proteins and denaturation of proteins – Fibrous & globular proteins | | Lecture &
Discussion | Black
Board&
LCD | | | UNIT -4 TE | RPENES | | | | 4.1 | Introduction, Occurrence classification, Isolation. | 2 | Lecture | Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------------|-------------------------| | 4.2 | general properties. | 1 | Chalk &
Talk | Green
Board | | 4.3 | Isopreneand special isoprene rule. Gemdialkylerule.Structure,synthesis of Citral, | 3 | Chalk &
Talk | Black
Board | | 4.4 | Structure,synthesis of
Limonene | 2 | Chalk &
Talk | Black
Board | | 4.5 | Structure, synthesis of Limonene , Camphor. | 1 | Chalk &
Talk | Black
Board | | 4.6 | Structure,synthesis of Camphor. | 1 | Chalk &
Talk
Lecture | Black
Board | | 4.7 | Structure,synthesis of Camphor, Zingiberene. | 3 | Chalk &
Talk
Lecture | PPT &
White
board | | 4.8 | Structure, synthesis of Zingiberene. | 2 | Chalk &
Talk
Lecture | Black
Board | | | UNIT -5 ALI | KALOIDS | | | | 5.1 | Definition, occurrence | 1 | Lecture | Black
Board | | 5.2 | extraction and general methods for determining the structure-functional nature of oxygen, Nitrogen. | 2 | Chalk &
Talk | Green
Board | | 5.3 | Herzigmayer and Kuhnroth method for estimation of C-methyl group. | 3 | Chalk &
Talk | Black
Board | | 5.4 | Degradation of alkaloids-
Hofmannexhaustive
methylation,Emde's
degradation, Von Braun's. | 2 | Chalk &
Talk | White
board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------------|------------------| | 5.5 | Reductive degradation,alkali fusion and oxidation. | 2 | Discussion | LCD | | 5.6 | Structure and synthesis of Coniine. | 1 | Chalk &
Talk
Lecture | Black
Board | | 5.7 | Structure and synthesis of Piperine, Nicotine. | 2 | Chalk &
Talk | White
board | | 5.8 | Structure and synthesis of Quinine. | 2 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholasti
c Marks
C5 | CIA
Total | | |-----------------|------------------------------|------------------------|----------------|---------------------|------------------------------|-----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5 Mks | 5+5=10
Mks. | 15 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 ½ | 7.5 | - | 7.5 | 18.75
% | | К2 | - | 5 | 4 | 2 ½ | 11.5 | - | 11.5 | 28.75
% | | К3 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | K4 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | Non
Scholast | - | - | - | - | | 5 | 5 | | | ic | | | | | | | | 12.5 % | |-------|---|---|----|----|----|---|----|--------| | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIAcomponents. - \checkmark The levels of CIA Assessment based on Revised Bloom's Taxonomy for: K1- Remember, K2-Understand, K3-Apply, K4-Analyse ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|-----------|----|---------------------|-----------|-----|-----|-------| | C1 | C2 | С3 | C4 | C5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|-------------------| | | To develop novel, efficient, | | PSO1& PSO2 | | CO 1 | convenient, selective synthetic methods in organic chemistry. | K1 | | | | To get familiar with particular | | PSO3 | | CO 2 | properties and reactions for the most | K1, K2 | | | | important heterocyclic as well as different systems of nomenclature. | , | | | | To fully comprehend the chemistry of | | | | CO 3 | amino acids, peptides, proteins. | K1 & K3 | PSO5 | | | | | | | | To provide an advanced | | PSO1 | | CO 4 | understanding of the core principles and topics of chemistry of natural | K1, K2 & K3 | | | | products. | | | | | To demonstrate advanced knowledge | | PSO1 | | CO 5 | and understanding in aspect of | K2 & K4 | | | | alkaloids. | | | | | | | | | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | | CO2 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO3 | 3 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | | CO4 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | | CO5 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | ## **Mapping of COs with POs** | CO/
PSO | P01 | PO2 | PO3 | P04 | |------------|-----|-----|-----|-----| | CO1 | 3 | 3 | 2 | 2 | | CO2 | 3 | 3 | 1 | 1 | | CO3 | 3 | 3 | 1 | 2 | | CO4 | 3 | 3 | 1 | 2 | | CO5 | 3 | 3 | 2 | 1 | Note: Strongly Correlated – 3 Moderately Correlated – 2 Weakly Correlated -1 **COURSE DESIGNER:** Dr.Sr.ArulMary.J # III B.Sc. CHEMISTRY SEMESTER -VI 15% ### For those who joined in 2019 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGOR
Y | HRS/
WEE
K | CRE
DITS | |-----------------------|----------------|---|--------------|------------------|-------------| | UACH | 19C6ME3 | ADVANCED ORGANIC
CHEMISTRY
(CONFORMATIONAL
ANALYSIS, ORGANIC
PHOTOCHEMISTRY
AND MOLECULAR
REARRANGEMENTS) | Elective | 5 | 5 | ### **COURSE DESCRIPTION** The course is offered to expose the advanced topics in the field of organic chemistry. ### **COURSE OBJECTIVES** This course helps the students to acquire a thorough knowledge of the advanced topics of
organic chemistry related to conformational analysis of cyclohexanes, Photochemistry and molecular rearrangements. ### UNITS # UNIT -I CONFORMATIONAL ANALYSIS- I (15 HRS.) Stereoisomerism of ring systems- number and kind of stereoisomers-cyclopropane, cyclobutane, cyclopentane and cyclohexane. Conformations of ethane and n-butane-conformational energy diagram. Conformation of mono substituted cyclohexane-stability and optical activity-conformation of disubstituted cyclohexanes-stability and optical activity and decalins their stability and optical activity. # UNIT -II CONFORMATIONAL ANALYSIS- II HRS.) (15 Conformation and physical properties, and conformation and chemical reactivity- S_N^1 , S_N^2 , ionic eliminations, rearrangements, NGP, epoxide ring closure and ring opening reactions, addition to cyclohexene derivatives, pyrolysis of acetates, xanthates and amine oxides. # UNIT -III ORGANIC PHOTOCHEMISTRY (15 HRS.) Organic photochemistry –Photochemical Elimination in carbonyl compounds and nitrites- Norrish type-I & Norrish type-II, Barton reaction. Photochemical reduction, oxidation and cis-trans isomerisation, Intermolecular cycloaddition $(2\pi + 2\pi)$ & $(4\pi + 2\pi)$ cycloadditions, supara and antara overlap-FMO approach, and electrocyclic reactions- 4n & 4n+2 systems. Conrotation, disrotation. FMO approach to predict stereochemistry. # UNIT -IV MOLECULAR REARRANGEMENTS-I (15 HRS.) Rearrangement to electron deficient atom or nucleophilic rearrangements – Mechanism of Pinacol-Pinacolone, Wagner-Meerwin, Hoffman and benzilic acid rearrangement. Rearrangements to electron rich atom or electrophilic rearrangements – Stevens rearrangements. Aromatic rearrangements – Claisen, Benzidine and Fries rearrangement. ### UNIT -V MOLECULAR REARRANGEMENTS -II (15 HRS.) Favorski, Baeyer Villiger, Cope, Curtius and Beckmann rearrangements, Synthetic importance of N – Bromosuccinimide, Osmium tetroxide, Selenium dioxide, PyridiniumChloro Chromite, Lithium Aluminium Hydride and Sodium Boro Hydride. ### **REFERENCES:** **1.** Eliel- Stereochemistry of carbon compounds, Tata Mc-Graw Hill Edn, 1995. - **2.**Dr.P. Ramesh, Basic principles of Organic Stereochemistry, First Edn, Meenu Publications. - 3. Morrison & Boyd, -Organic chemistry , 6^{th} Edn, Prentice-hall of India pvt, Ltd, 2005. - **4.** Jagdamba Singh, Photochemistry and Pericyclic Reactions, New age international publishers, 2009. - **5**.I.L.Finar, Vol-I, Organic Chemistry, sixth Edn., ELBS & Longmann group Ltd. - **6.**V.K.Ahluwalia & R.K.Prashar, Organic Reaction Mechanism, First Edn, 2002, Narosa publishing House. - **7.** K. K. Rohatgi-Mukherjee, fundamentals of photochemistry, New age international publishers, 2006. ### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|---------------------------| | | UNIT -1 CONFORMATI | ONAL AN | ALYSIS-I | | | 1.1 | Stereoisomerism of ring systems-
number and kind of
stereoisomers - cyclopropane,
cyclobutane, cyclopentane and
cyclohexane. | | Chalk &
Talk | Black
Board | | 1.2 | Conformations of ethane | 1 | Chalk &
Talk | LCD | | 1.3 | Conformations of n-butane-
conformational energy diagram | 1 | Lecture | Ball &
Stick
Models | | 1.4 | Conformation of mono substituted cyclohexane-stability and optical activity | 3 | Lecture | Black
Board | | 1.5 | conformation of disubstituted cyclohexanes stability | 3 | Lecture | Ball &
Stick
Models | |---------|---|------------|-----------------|---------------------------| | 1.6 | conformation of disubstituted cyclohexanes optical activity | 2 | Lecture | Ball &
Stick
Models | | 1.7 | decalins their stability | 1 | Lecture | PPT &
White
board | | 1.8 | Decalins optical activity. | 2 | Discussion | Black
Board | | UNIT -2 | CONFORMATIONAL AN | ALYSIS- II | | | | 2.1 | Conformation and physical properties | 1 | Lecture | Black
Board | | 2.2 | conformation and chemical reactivity | 2 | Chalk &
Talk | Green
Board | | 2.3 | S_N^1 , S_N^2 , ionic eliminations | 2 | Chalk &
Talk | Black
Board | | 2.4 | Rearrangements, NGP | 3 | Lecture | PPT &
White
board | | 2.5 | Epoxide ring closure and ring opening reactions | 2 | Discussion | LCD | | 2.6 | Addition to cyclohexene derivatives | 1 | Lecture | Black
Board | | 2.7 | Pyrolysis of acetates | 2 | Lecture | PPT &
White
board | | 2.8 | Pyrolysis of xanthates and amine oxides | 2 | Lecture | Black
Board | | UNIT -3 | ORGANIC PHOTOCHEM | IISTRY | | | | 3.1 | Organic photochemistry –
Photochemical Elimination in
carbonyl compounds and nitrites | 2 | Lecture | Black
Board | | 3.2 | Norrish type-I & Norrish type-II,
Barton reaction | 3 | Discussion | LCD | | 3.3 | Photochemical reduction, oxidation and cis-trans isomerisation | 3 | Lecture | PPT &
White
Board | | 3.4 | Intermolecular cycloaddition $(2\pi + 2\pi)$ & $(4\pi + 2\pi)$ cycloadditions | 2 | Lecture | Black
Board | | 3.5 | supara and antara overlap-FMO approach | 1 | Discussion | LCD | |---------|---|----------|-----------------|-------------------------| | 3.6 | electrocyclic reactions- 4n & 4n+2 systems | 2 | Lecture | Black
Board | | 3.7 | Conrotation, disroattion | 1 | Lecture | Black
Board | | 3.8 | FMO approach to predict stereochemistry | 1 | Lecture | Black
Board | | UNIT -4 | MOLECULAR REARRA | NGEMENTS | S-I | | | 4.1 | Rearrangement to electron deficient atom or nucleophilic rearrangements | 1 | Lecture | Black
Board | | 4.2 | Mechanism of Pinacol-
Pinacolone rearrangement | 3 | Chalk &
Talk | Green
Board | | 4.3 | Mechanism of Wagner-Meerwin rearrangement | 2 | Chalk &
Talk | Black
Board | | 4.4 | Mechanism of Hoffman and benzilic acid rearrangements | 3 | Lecture | PPT &
White
board | | 4.5 | Rearrangements to electron rich atom or electrophilic rearrangements | 1 | Discussion | LCD | | 4.6 | Mechanism of Stevens rearrangement | 1 | Lecture | Black
Board | | 4.7 | Aromatic rearrangements –
Mechanism of Claisen
rearrangement | 2 | Lecture | PPT &
White
board | | 4.8 | Mechanism of Benzidine and Fries rearrangements. | 2 | Lecture | Black
Board | | UNIT -5 | MOLECULAR REARRAN | IGEMENTS | -I I | | | 5.1 | Favorski rearrangement | 2 | Lecture | Black
Board | | 5.2 | Baeyer Villiger rearrangement | 2 | Chalk &
Talk | Green
Board | | 5.3 | Cope and Curtius rearrangements | 3 | Chalk &
Talk | Black
Board | | 5.4 | Beckmann rearrangement | 1 | Lecture | PPT &
White
board | | 5.5 | Synthetic importance of N – Bromosuccinimide and Osmium tetroxide | | Discussion | LCD | |-----|---|---|------------|-------------------------| | 5.6 | Synthetic importance of Selenium dioxide | 1 | Lecture | Black
Board | | 5.7 | Synthetic importance of
Pyridinium Chloro Chromite | 2 | Lecture | PPT &
White
board | | 5.8 | Synthetic importance of Lithium
Aluminium Hydride and Sodium
Boro Hydride | | Lecture | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholasti
c Marks | Non
Scholast
ic Marks
C5 | CIA
Total | | |-----------------------|-----------------------------|----------------------------|----------------|---------------------|-------------------------------|-----------------------------------|--------------|------------------------| | Levels | Session
-wise
Average | Bette
r of
W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assess
ment | | | 5 Mks. | 5 Mks | 5+5=10
Mks. | 15 Mks | 35 Mks. | 5 Mks. | 40Mks | | | K1 | 5 | ı | ı | 2 ½ | 7.5 | ı | 7.5 | 18.75
% | | K2 | - | 5 | 4 | 2 ½ | 11.5 | - | 11.5 | 28.75
% | | К3 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | K4 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | Non
Scholast
ic | - | - | - | - | | 5 | 5 | 12.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic **5** - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for: K1- Remember, K2-Understand, K3-Apply, K4-Analyse ### **EVALUATION PATTERN** | SCHOLASTIC | | | NON –
SCHOLASTIC | MARKS | | | | |------------|-----------|----|---------------------|------------|-----|-----|-------| | C1 | C2 | С3 | C4 | C 5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | - **C1** Average of Two Session Wise Tests - C2 Average of Two Monthly Tests - C3 Mid Sem Test - C4 Best of Two Weekly Tests - C5 Non Scholastic ### **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----|-----------------|--|-------------------| |-----|-----------------|--|-------------------| | CO 1 | To interpret the concept of conformations of acyclic and cyclic alkanes and to discuss mono and disubstituted cyclohexanes. | K1, K2, K3 | PSO1& PSO2 | |------|--|-------------------|------------| | CO 2 | To explore reactivity patterns of cyclohexanes and to employ conformational reactivity in cis and trans decalins. | K1, K2, K3 | PSO2 &PSO3 | | CO 3 | To sketch Frontier
molecular orbitals in photochemistry and to dramatize photochemical and electrocyclic reactions | K1, K2, K3
&K4 | PSO3 &PS05 | | CO 4 | To differentiate the molecular rearrangements and to solve the simple problems | K1, K2, K3
&K4 | PS03&PS05 | | CO 5 | To prepare the various organic reagents and to recall its synthetic importance and to categorize the reducing and oxidizing agents and its applications. | K1, K2, K3
&K4 | PS05 &PS07 | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | | CO3 | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 1 | | CO4 | 2 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO5 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | ### Mapping of COs with POs | CO/
PSO | P01 | P02 | P03 | P04 | |------------|-----|-----|-----|-----| | CO1 | 3 | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 2 | | CO3 | 3 | 3 | 3 | 3 | | CO4 | 3 | 2 | 3 | 3 | | CO5 | 3 | 2 | 2 | 3 | Note: Strongly Correlated - 3 ModeratelyCorrelated - 2 WeaklyCorrelated -1 ### **COURSE DESIGNER:** 1.Dr.M.Priyadharsani 2.Dr.B.Vinosha Forwarded By B-Tedora. **HoD Signature** # III B.Sc. CHEMISTRY SEMESTER –VI ### For those who joined in 2021 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGOR
Y | HRS/
WEE
K | CRE
DITS | |-----------------------|----------------|---|--------------|------------------|-------------| | UACH | 19C6ME3 | ADVANCED ORGANIC
CHEMISTRY
(CONFORMATIONAL
ANALYSIS, ORGANIC
PHOTOCHEMISTRY
AND MOLECULAR
REARRANGEMENTS) | Elective | 5 | 5 | #### COURSE DESCRIPTION The course is offered to expose the advanced topics in the field of organic chemistry. ### **COURSE OBJECTIVES** This course helps the students to acquire a thorough knowledge of the advanced topics of organic chemistry related to conformational analysis of cyclohexanes, Photochemistry and molecular rearrangements. #### **UNITS** # UNIT -I CONFORMATIONAL ANALYSIS- I (15 HRS.) Stereoisomerism of ring systems- number and kind of stereoisomers-cyclopropane, cyclobutane, cyclopentane and cyclohexane. Conformations of ethane and n-butane-conformational energy diagram. Conformation of mono substituted cyclohexane-stability and optical activity-conformation of disubstituted cyclohexanes-stability and optical activity and decalins their stability and optical activity. # UNIT -II CONFORMATIONAL ANALYSIS- II HRS.) (15 Conformation and physical properties, and conformation and chemical reactivity- S_N^1 , S_N^2 , ionic eliminations, rearrangements, NGP, epoxide ring closure and ring opening reactions, addition to cyclohexene derivatives, pyrolysis of acetates, xanthates and amine oxides. # UNIT -III ORGANIC PHOTOCHEMISTRY (15 HRS.) Organic photochemistry –Photochemical Elimination in carbonyl compounds and nitrites- Norrish type-I & Norrish type-II, Barton reaction. Photochemical reduction, oxidation and cis-trans isomerisation, Intermolecular cycloaddition $(2\pi + 2\pi)$ & $(4\pi + 2\pi)$ cycloadditions, supara and antara overlap-FMO approach, and electrocyclic reactions ring opening and ring closure reactions- 4n & 4n+2 systems. Conrotation, disrotation. FMO approach to predict stereochemistry. ### UNIT -IV MOLECULAR REARRANGEMENTS-I (15HRS.) Rearrangement to electron deficient atom or nucleophilic rearrangements – Mechanism of Pinacol-Pinacolone, Wagner-Meerwin, Hoffman and benzilic acid rearrangement. Rearrangements to electron rich atom or electrophilic rearrangements – Stevens rearrangements. Aromatic rearrangements – Claisen, Benzidine and Fries rearrangement. ### UNIT -V MOLECULAR REARRANGEMENTS -II AND REAGENTS (15 HRS.) Favorski, Baeyer Villiger, Cope, Curtius and Beckmann rearrangements, Synthetic importance of N – Bromosuccinimide, Osmium tetroxide, Selenium dioxide, PyridiniumChloro Chromite, Lithium Aluminium Hydride and Sodium Boro Hydride. #### **REFERENCES:** **5.** Eliel- Stereochemistry of carbon compounds, Tata Mc-Graw Hill Edn, 1995. - **6.** Dr.P. Ramesh, Basic principles of Organic Stereochemistry, First Edn, Meenu Publications. - 7. Morrison & Boyd, -Organic chemistry , 6^{th} Edn, Prentice-hall of India pvt, Ltd, 2005. - **8.** Jagdamba Singh, Photochemistry and Pericyclic Reactions, New age international publishers, 2009. - **5**.I.L.Finar, Vol-I, Organic Chemistry, sixth Edn., ELBS & Longmann group Ltd. - **6.**V.K.Ahluwalia & R.K.Prashar, Organic Reaction Mechanism, First Edn, 2002, Narosa publishing House. - **7**. K. K. Rohatgi-Mukherjee, fundamentals of photochemistry, New age international publishers, 2006. ### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|---------------------------| | | UNIT -1 CONFORMATI | ONAL AN | ALYSIS-I | | | 1.1 | Stereoisomerism of ring systems-
number and kind of
stereoisomers - cyclopropane,
cyclobutane, cyclopentane and
cyclohexane. | | Chalk &
Talk | Black
Board | | 1.2 | Conformations of ethane | 1 | Chalk &
Talk | LCD | | 1.3 | Conformations of n-butane-
conformational energy diagram | 1 | Lecture | Ball &
Stick
Models | | 1.4 | Conformation of mono substituted cyclohexane-stability and optical activity | 3 | Lecture | Black
Board | | 1.5 | conformation of disubstituted cyclohexanes stability | 3 | Lecture | Ball &
Stick
Models | |---------|---|------------|-----------------|---------------------------| | 1.6 | conformation of disubstituted cyclohexanes optical activity | 2 | Lecture | Ball &
Stick
Models | | 1.7 | decalins their stability | 1 | Lecture | PPT &
White
board | | 1.8 | Decalins optical activity. | 2 | Discussion | Black
Board | | UNIT -2 | CONFORMATIONAL AN | ALYSIS- II | | | | 2.1 | Conformation and physical properties | 1 | Lecture | Black
Board | | 2.2 | conformation and chemical reactivity | 2 | Chalk &
Talk | Green
Board | | 2.3 | S_N^1 , S_N^2 , ionic eliminations | 2 | Chalk &
Talk | Black
Board | | 2.4 | Rearrangements, NGP | 3 | Lecture | PPT &
White
board | | 2.5 | Epoxide ring closure and ring opening reactions | 2 | Discussion | LCD | | 2.6 | Addition to cyclohexene derivatives | 1 | Lecture | Black
Board | | 2.7 | Pyrolysis of acetates | 2 | Lecture | PPT &
White
board | | 2.8 | Pyrolysis of xanthates and amine oxides | 2 | Lecture | Black
Board | | UNIT -3 | ORGANIC PHOTOCHEM | ISTRY | | | | 3.1 | Organic photochemistry –
Photochemical Elimination in
carbonyl compounds and nitrites | 2 | Lecture | Black
Board | | 3.2 | Norrish type-I & Norrish type-II,
Barton reaction | 3 | Discussion | LCD | | 3.3 | Photochemical reduction, oxidation and cis-trans isomerisation | 3 | Lecture | PPT &
White
Board | | 3.4 | Intermolecular cycloaddition $(2\pi + 2\pi)$ & $(4\pi + 2\pi)$ cycloadditions | 2 | Lecture | Black
Board | | 3.5 | supara and antara overlap-FMO approach | 1 | Discussion | LCD | |---------|---|----------|-----------------|-------------------------| | 3.6 | electrocyclic reactions- 4n & 4n+2 systems | 2 | Lecture | Black
Board | | 3.7 | Conrotation, disroattion | 1 | Lecture | Black
Board | | 3.8 | FMO approach to predict stereochemistry | 1 | Lecture | Black
Board | | UNIT -4 | MOLECULAR REARRA | NGEMENTS | S-I | | | 4.1 | Rearrangement to electron deficient atom or nucleophilic rearrangements | 1 | Lecture | Black
Board | | 4.2 | Mechanism of Pinacol-
Pinacolone rearrangement | 3 | Chalk &
Talk | Green
Board | | 4.3 | Mechanism of Wagner-Meerwin rearrangement | 2 | Chalk &
Talk | Black
Board | | 4.4 | Mechanism of Hoffman and benzilic acid rearrangements | 3 | Lecture | PPT &
White
board | | 4.5 | Rearrangements to electron rich atom or electrophilic rearrangements | 1 | Discussion | LCD | | 4.6 | Mechanism of Stevens rearrangement | 1 | Lecture | Black
Board | | 4.7 | Aromatic rearrangements –
Mechanism of Claisen
rearrangement | 2 | Lecture | PPT &
White
board | | 4.8 | Mechanism of Benzidine and Fries rearrangements. | 2 | Lecture | Black
Board | | UNIT -5 | MOLECULAR REARRAN | IGEMENTS | -I I | | | 5.1 | Favorski rearrangement | 2 | Lecture | Black
Board | | 5.2 | Baeyer Villiger rearrangement | 2 | Chalk &
Talk | Green
Board | | 5.3 | Cope and Curtius rearrangements | 3 | Chalk &
Talk | Black
Board | | 5.4 | Beckmann rearrangement | 1 | Lecture | PPT &
White
board | | 5.5 | Synthetic importance of N – Bromosuccinimide and Osmium tetroxide | | Discussion | LCD | |-----|---|---|------------|-------------------------| | 5.6 | Synthetic importance of Selenium dioxide | 1 | Lecture | Black
Board | | 5.7 | Synthetic importance of
Pyridinium Chloro Chromite | 2 | Lecture | PPT &
White
board | | 5.8 | Synthetic importance of Lithium
Aluminium Hydride and Sodium
Boro Hydride | | Lecture | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholasti
c Marks | Non
Scholast
ic Marks
C5 | CIA
Total | | |-----------------------|-----------------------------|----------------------------|----------------|---------------------|-------------------------------|-----------------------------------|--------------|------------------------| | Levels |
Session
-wise
Average | Bette
r of
W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assess
ment | | | 5 Mks. | 5 Mks | 5+5=10
Mks. | 15 Mks | 35 Mks. | 5 Mks. | 40Mks | | | K1 | 5 | ı | ı | 2 ½ | 7.5 | ı | 7.5 | 18.75
% | | K2 | - | 5 | 4 | 2 ½ | 11.5 | - | 11.5 | 28.75
% | | К3 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | K4 | - | - | 3 | 5 | 8 | - | 8 | 20 % | | Non
Scholast
ic | - | - | - | - | | 5 | 5 | 12.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic **5** - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for: K1- Remember, K2-Understand, K3-Apply, K4-Analyse ### **EVALUATION PATTERN** | SCHOLASTIC | | | NON –
SCHOLASTIC | MARKS | | | | |------------|-----------|----|---------------------|------------|------------|----|-------| | C1 | C2 | С3 | C4 | C 5 | CIA ESE To | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | - **C1** Average of Two Session Wise Tests - C2 Average of Two Monthly Tests - C3 Mid Sem Test - C4 Best of Two Weekly Tests - C5 Non Scholastic ### **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----|-----------------|--|-------------------| |-----|-----------------|--|-------------------| | CO 1 | To interpret the concept of conformations of acyclic and cyclic alkanes and to discuss mono and disubstituted cyclohexanes. | K1, K2, K3 | PSO1& PSO2 | |------|--|-------------------|------------| | CO 2 | To explore reactivity patterns of cyclohexanes and to employ conformational reactivity in cis and trans decalins. | K1, K2, K3 | PSO2 &PSO3 | | CO 3 | To sketch Frontier molecular orbitals in photochemistry and to dramatize photochemical and electrocyclic reactions | K1, K2, K3
&K4 | PSO3 &PS05 | | CO 4 | To differentiate the molecular rearrangements and to solve the simple problems | K1, K2, K3
&K4 | PS03&PS05 | | CO 5 | To prepare the various organic reagents and to recall its synthetic importance and to categorize the reducing and oxidizing agents and its applications. | K1, K2, K3
&K4 | PS05 &PS07 | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | |------------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | | CO3 | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 1 | | CO4 | 2 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO5 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 1 | ### Mapping of COs with POs | CO/
PSO | P01 | P02 | P03 | P04 | |------------|-----|-----|-----|-----| | CO1 | 3 | 2 | 2 | 2 | | CO2 | 3 | 2 | 2 | 2 | | CO3 | 3 | 3 | 3 | 3 | | CO4 | 3 | 2 | 3 | 3 | | CO5 | 3 | 2 | 2 | 3 | Note: Strongly Correlated - 3 ModeratelyCorrelated - 2 WeaklyCorrelated -1 ### **COURSE DESIGNER:** 1.Dr.M.Priyadharsani2.Dr.B.Vinosha **Forwarded** R-Tedora. HoD Signature