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A B S T R A C T   

Reduced graphene oxide (rGO) modified cobalt oxide (Co3O4) nanocomposite (NC) thin films were prepared on 
aluminum substrates through dip-coating technique for solar selective absorber. The prepared rGO-Co3O4 NC 
thin films were characterized by X-ray diffraction, which revealed that the prepared samples have face centered 
cubic structure. Scanning electron microscopy showed that morphology of prepared thin films is comprised of 
spherical shaped grains with rough surface. Energy-dispersive X-ray spectra exhibited absence of impurities in 
the thin films. Raman spectra predicted spinel structure, combined vibrations of tetrahedral site and octahedral 
oxygen motions in the rGO-Co3O4 NC thin films. Optical properties were investigated by UV–Vis–NIR reflectance 
spectroscopy. The prepared thin films with a concentration of 1.0 wt% of rGO (1%-rGO-Co3O4) disclosed a 
highest solar absorptance (α = 89.95) and low thermal emittance (ε = 4.6) with a highest solar selectivity (ξ) of 
19.55. These values indicated that the rGO-Co3O4 NC thin film samples can be ideal candidates as solar selective 
absorbers for solar thermal energy gadgets.   

1. Introduction 

Solar energy has manifested as highly ideal, copious and reliable 
energy resource when compared to other renewable energy resources 
[1,2]. Among diverse technologies that reliant on solar energy, solar 
thermal technology is regarded as eco-friendly that directly transforms 
solar energy into thermal energy and consequently, it finds application 
in the fields of solar water heating, concentrating solar collectors, 
seawater desalination, solar thermoelectric and solar assisted cooling of 
buildings [3–6]. A key device component, which is necessitated in all 
these applications for harvesting thermal form of solar energy is solar 
selective absorber with significant solar absorptance (α > 90%) in 
visible and near-infrared regions (0.4 μm–2.0 μm) and low thermal 
emittance (ε < 10%) in mid-infrared wavelengths (2.5 μm–25 μm) of the 
solar spectrum (Planck’s spectrum) [7,8]. Materials with appreciable 
photothermal conversion potential can be developed with an aid of their 

anticipated properties of high thermal conductivity, notable thermal 
stability, long-term humidity tolerance, corrosion resistance, small 
refraction index and low expansion coefficient [9]. Nevertheless, pre
vious studies have been conclusively demonstrated the possibility of not 
attaining considerably high photothermal conversion efficiencies by a 
single-component solar selective absorber [10–13]. Conversely, high 
photothermal conversion efficiencies can be attained using 
bi-component functional materials by means of their improved proper
ties over single-component materials [14]. It has been proved that the 
low-cost metal substrate (Aluminum (Al)) employed for coating solar 
selective absorber discloses beneficial properties of low thermal emit
tance, appreciable thermal conductivity and resistance to corrosion 
[15]. 

Recently, research interest on cobalt oxide (Co3O4) has increased 
because of its high surface area, affordability, eco-friendly, facile 
fabrication, and outstanding chemical, physical and corrosion stability. 
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It is a p-type semiconductor with band gap energy ranges between 1 and 
3 eV [16–18]. Owing to outstanding optical, electrical and magnetic 
properties, it has been found diverse application potentials in gas sensors 
[19], supercapacitors [20], lithium-ion batteries [21], low temperature 
CO oxidation [22], high temperature solar selective absorbers [23] and 
energy storage [24]. Among several solar selective absorber coatings, 
Co3O4 has been investigated as an inherent solar selective absorber in 
view of its advantageous properties of low thermal emittance and high 
solar absorptance [17,18,23]. Meanwhile, in recent years, researchers 
have switched over their attention significantly to graphene because of 
its unique thermal, physical and chemical properties. Graphene has 
attained considerable attraction because of its interesting large theo
retical surface area (2630 m2g− 1), substantial intrinsic mobility, high 
Young’s modulus (1.0 T Pa), appreciable thermal conductivity (5000 
Wm− 1K− 1) and noticeable transmittance (97.7%). In addition, it has 
shown exceptional electrical conductivity, mechanical flexibility, opti
cal transparency and low thermal expansion coefficient [25–29]. As a 
consequence, it has found proficient application potentials in catalysis, 
sensors, energy conversion and energy storage devices. 

Two imperative derivatives of graphene are graphene oxide (GO) 
and reduced graphene oxide (rGO) that disclose different chemical and 
structural characteristics, due to variations in their chemical composi
tion. The most noticeable differences are found in their thermal stability, 
electrical conductivity, mechanical strength, hydrophilic behavior, and 
dispersibility. The stability of GO with respect to temperature can be 
improved by reducing GO partially, which produces rGO and moreover 
that induces key changes in mechanical, structural, solubility and 

reactive properties [30]. Consequently, the rGO exhibits substantial 
application potential in sensors [31,32], storage of energy and its con
version, electronic devices, supercapacitors, biomedicine, catalysts and 
water purification [33]. Noticeably, the rGO has marked absorption 
property in visible and near infrared regions of the solar spectrum [34, 
35] and as a result, it can be integrated as an ideal component for solar 
selective absorber. Recently, the rGO has demonstrated as a most 
promising tandem material for improving efficiency of solar selective 
absorber in combination with NiO [36]. Meanwhile, it contains func
tional groups that facilitate its dispersion in a variety of solvents without 
aggregation [37,38]. Optimizing optical properties of inorganic semi
conductor metal oxide in combination with rGO as a hybrid system is 
feasible for the development of rGO-based solar selective absorber. Since 
the rGO facilitates considerable solubility in aqueous and polar solvents, 
the dependance of sol-gel technique is viable to prepare rGO-based thin 
films, which could display high transmittance and strongly resist abra
sion that is ideal for applications during harsh conditions [39]. 

Formation of economically and optically efficient solar selective 
absorber is an indispensable prerequisite for realizing low-cost solar flat 
plate thermal collectors because the present solar selective absorbers 
preparation methods need costly equipment and also they are not eco- 
friendly. In this work, we demonstrate the synthesis of low-cost solar- 
selective absorber thin films comprised of Co3O4 grafted rGO on Al 
substrates through a simple dip-coating technique. The goal of the 
present work is to realize an efficient solar selective absorber nano
composite thin film by combination of Co3O4 with optically efficient 
rGO. 

2. Experimental 

2.1. Chemicals 

Graphite flakes were procured from Alfa Aesar. Sulfuric acid 
(H2SO4), potassium permanganate (KMnO4), hydrogen peroxide (H2O2) 
and sodium nitrate (NaNO3) were supplied by Rankem. Cobalt acetate 
[Co(CH3COO)2], diethanolamine (DEA) [NH(CH2CH2OH)2] and poly
ethylene glycol (PEG) [HO(CH2CH2O)nH, MW = 4000] were procured 
from Merck. Ethanol [CH3CH2OH] and double distilled water were 
employed for experiments. 

2.2. Preparation of Co3O4 precursor sol 

The Co3O4 precursor sol was prepared by dissolving 0.6 M cobalt 
acetate in absolute ethanol and subjected to magnetic stirring for 4 h. By 
heating the above solution at 50 ◦C for 20 min, ethanol was evaporated 
and reduced to half of its volume to get an adhesive solution. Subse
quently, DEA was added as a chelating agent and stirred for 30 min, 
followed by PEG was included to the Co3O4 precursor sol as structure 
directing agent and the stirring was continued. 

2.3. Preparation of rGO-Co3O4 nanocomposite thin films 

Modified Hummer’s protocol was employed to prepared graphene 
oxide (GO) from natural graphite [40]. Afterwards, diverse quantities 
(0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 wt%) of GO were mixed separately to the 
Co3O4 precursor sol. Eventually, the composite sols were stirred for 24 h 
and aged for 5 days to form sols containing GO-Co3O4 nanocomposites. 
The precleaned Al substrates were subjected to dip coating by immersing 
them in the GO-Co3O4 NC sols using dip coating equipment. The dipping 
and withdrawal rates of the Al substrates were 2 mm/s and the evapo
ration time of the coating on the Al substrate was 10 s. Finally, the 
coated thin films were dried at 100 ◦C for 4 h and calcined at 250 ◦C in a 
muffle furnace for 3 h to get rGO-Co3O4 NC thin films. 

Fig. 1. (a) XRD spectra of Co3O4 and rGO-Co3O4 NC thin films and (b) Dislo
cation density and strain values of (A) Co3O4, (B) 0.1%-rGO-Co3O4, (C) 1.0%- 
rGO-Co3O4 and (D) 2.0%-rGO-Co3O4 NC thin films. 
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2.4. Characterization 

XRD patterns of rGO-Co3O4 NC thin films were recorded in Bruker 
AXS D8 advance X-ray diffractometer with Cu Kα radiation (λ = 1.5418 
Å). SEM images and EDX spectra were taken using JEOL6390 scanning 
electron microscopy and EDX accessory, respectively. Raman spectra 
were obtained by 632.8 nm line of the He-Ne laser as excitation source. 
Normal reflectance of thin films was measured between 400 and 2200 
nm using UV–vis–NIR spectrophotometer (Cary 5E) equipped with DRS 
accessory. Solar absorptances of thin films were calculated by the 
following formula [41]: 

Absorp tan ce(α)=

∫2.0μm

0.3μm

Isol(λ)(1 − R(λ))dλ

∫2.0μm

0.3μm

Isol(λ)dλ

(1)  

where, Isol(λ) is normal spectral irradiance of solar radiation at wave
length ‘λ’. 

Thermal emittance was recorded in an emissometer (AE1/RD1). The 
selectivity (ξ) of thin films is ratio between solar absorptance (α) to 
thermal emittance (ε). 

ξ=
α
ε (2)  

3. Results and discussion 

3.1. XRD analysis 

XRD spectra of Co3O4, 0.1%-rGO-Co3O4, 1.0%-rGO-Co3O4 and 2.0%- 
rGO-Co3O4 NC thin films are illustrated in Fig. 1(a). The XRD pattern of 
pure Co3O4 thin film exhibits diffraction peaks correspond to stable 
Co3O4 phase at 2θ values of 31.69, 37.63, 45.29, 60.34, 65.67, and 
78.73◦, which are allocated to (2 2 0), (3 1 1), (4 0 0), (5 1 1), (4 4 0) and 
(5 3 3) diffraction planes of face centered cubic structured Co3O4 (JCPDS 
Card No. 42-1467) [18,42]. The diffraction peak appeared at 65.43◦

corresponding to the (2 2 0) diffraction plane is attributed to the Al 
substrate [43]. XRD spectra of rGO-Co3O4 NC thin films with diverse 
weight percentages (0.1, 1.0, and 2.0 wt%) of GO disclose diffraction 
peaks at 2θ values of 31.23, 36.90, 44.71, 59.68, 65.07, and 78.20◦. In 
addition to the diffraction peaks of Co3O4, a broad diffraction peak be
longs to rGO is appeared at 22.69◦ (0 0 2) in XRD patterns of the 
rGO-Co3O4 NC thin films. It is detected visibly that each diffraction peak 
has marginally shifted to lower diffraction angles with respect to 
diffraction peak positions of pure Co3O4 thin film. This slight shift in the 
diffraction peaks is due to the presence of rGO in the rGO-Co3O4 NC thin 
films. Similarly, diffraction peaks of rGO-Co3O4 NC thin films have 
shown different intensity values because of the influence of different 
weight percentages of rGO in the rGO-Co3O4 NC thin films and film 
thickness. 

The crystallite size (D) of pure Co3O4 and 0.1%-rGO-Co3O4, 1.0%- 
rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin films was calculated by 
Scherrer’s formula [44] and values were found to be 60.10, 69.55, 
72.46, and 76.41 nm, respectively. It is ascertained that crystallite sizes 
of 0.1%-rGO-Co3O4, 1.0%-rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin 
films are considerably high when compared to pure Co3O4 thin film 
owing to the existence of rGO in the rGO-Co3O4 NC thin films. The 
crystallite size values were used to calculate dislocation density (δ) and 
strain (ε) of the thin films and the obtained values are shown in Fig. 1(b). 
Basically, number of defects in a crystal is described by dislocation 
density and crystallinity is explained with the help of strain. From Fig. 1 

Fig. 2. EDX spectra of (a) Co3O4, (b) 1.0%-rGO-Co3O4 and (c) 2.0%-rGO-Co3O4 
NC thin films. 

Table 1 
Elemental composition of Co3O4 and rGO-Co3O4 NC thin films with different 
weight percentages.  

Thin Film 
Sample 

Elements Present Series Weight% Atomic% 

Co3O4 Co K-Series 85.59 61.73 
O 14.41 38.27 

1%-rGO-Co3O4 NC Co K-Series 60.14 28.09 
O 34.02 58.52 
C 5.84 13.39 

2%-rGO-Co3O4 NC Co K-Series 73.85 41.49 
O 19.77 40.92 
C 6.38 17.59  
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Fig. 3. SEM images of Co3O4 (a & b) thin film and 0.1%-rGO-Co3O4 (c & d), 1.0%-rGO-Co3O4 (e & f) and 2.0%-rGO-Co3O4 (g & h) NC thin films.  
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(b), it is noticed that pure Co3O4 thin film has exhibited highest dislo
cation density and strain values whereas, the values have decreased for 
rGO-Co3O4 NC thin films with respect to increasing the weight per
centage of rGO in the rGO-Co3O4 NC thin films. This lower value of 
dislocation density shows degree of crystallization of coated films and 
minimum strain value strongly indicates improved crystallinity of 
rGO-Co3O4 NC thin films. 

3.2. EDX study 

EDX characterization were performed to examine presence of ele
ments in Co3O4, 1.0%-rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin films 
and the obtained EDX spectra and percentage elemental composition are 
shown in Fig. 2 and Table 1, respectively. The purity of Co3O4 thin film is 
ascertained by its corresponding EDX spectrum, which discloses peaks 
with respect to the elements of Co and O (Fig. 2(a)). The atomic weight 
percentage of Co and O in the Co3O4 thin film is found to be 61.73 and 
38.27%, respectively (Table 1). Conversely, EDX spectra of both 1.0%- 
rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin films displayed peaks belong 
to the elements of Co, O, and C (Fig. 2(b) and (c)). The presence of 
carbon in the 1.0%-rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin films 
firmly confirmed the existence of rGO. The atomic weight percentage of 

the Co, O, and C are 28.09, 58.52, and 13.39%, respectively for the 
1.0%-rGO-Co3O4 thin film and 41.49, 40.92, and 17.59%, respectively 
for the 2.0%-rGO-Co3O4 NC thin film (Table 1). The purity of 1.0%-rGO- 
Co3O4 and 2.0%-rGO-Co3O4 NC thin films is confirmed by absence of 
peaks related to foreign elements. 

3.3. SEM examination 

SEM was used to determine the morphology of pure Co3O4, 0.1%- 
rGO-Co3O4, 1.0%-rGO-Co3O4 and 2.0%-rGO-Co3O4 NC thin films and 

Fig. 4. UV–Vis reflectance spectra of rGO-Co3O4 NC thin films prepared using 
(a) 10 dipping and (b) 20 dipping. 

Fig. 5. Absorptance (a) and emittance (b) values of rGO-Co3O4 NC thin films.  

Table 2 
Selectivity (ξ) of rGO-Co3O4 NC thin films.  

Wt% of GO Selectivity (ξ) 

10 Dipping 20 Dipping 

0.1% 15.68 16.01 
0.2% 16.97 17.16 
0.5% 17.36 18.38 
1.0% 19.24 19.55 
1.5% 18.60 19.52 
2.0% 18.20 19.16  
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the recorded low and high magnification SEM images are displayed in 
Fig. 3(a–h). The low magnification SEM image of pure Co3O4 thin film 
(Fig. 3(a)) shows that the Co3O4 is uniformly deposited on Al substrate. 
Even though low magnification SEM images of all the samples illustrate 
presence of fine coating Fig. (3(a, c, e and g)), the films have roughness 
on their surface. The high magnification SEM images Fig. (3(b, d, f and 
h)) exhibit spherical shaped particles dispersed on the Al substrate. The 
high magnification SEM image of 2.0%-rGO-Co3O4 NC thin film pos
sesses spherical nanoparticles on thin films with an average size of 
~175 nm (Fig. 3(h)). The high magnification SEM images of the rGO- 
Co3O4 NC thin films reveal that many spherical grain like Co3O4 parti
cles are disseminated randomly on the rGO sheets Fig. (3(d, f and h)). 
The polymer (PEG) in the precursor sol can help the rGO to adsorb the 
Co3O4 grains with an aid of surface functional groups. As a consequence 
of various wt% of rGO and PEG, the different grain sized Co3O4 particles 
are outspread on the rGO sheet in a productive manner. 

3.4. UV–Vis–NIR spectroscopy investigation 

UV–Vis–NIR reflection spectra of rGO-Co3O4 NC thin films prepared 
using diverse weight percentages (0.1%–2.0%) of rGO are shown in 
Fig. 4. The variations in reflectance of the rGO-Co3O4 NC thin films in 
UV–Vis–NIR region are easily observed from Fig. 4. The thin films dis
played low reflectance (<5%) in visible region and relatively high 

reflectance (>35%) in infrared region. It is presumed that the exterior of 
Al substrate helps to reflect infrared radiation that infiltrates through the 
coated thin films because of its inherent property of high reflectivity. 
The absorptance and reflectance of rGO-Co3O4 NC thin films are influ
enced by parameters, such as film thicknesses, exterior roughness and 
rGO content. The thickness of rGO-Co3O4 NC thin films was varied by 
adopting the thin films to different numbers of dipping (10 and 20) using 
dip-coating technique. The increment in the thin film thickness could 
diminish the reflectance, which helps to get a better outcome so that the 
rGO-Co3O4 NC thin films prepared using 10 dipping have displayed 
slightly high reflectance and low absorptance in the visible spectral re
gion when compared to the thin films fabricated using 20 dipping. From 
the UV–Vis–NIR spectra (Fig. 4(a)), the 1.0%-rGO-Co3O4 thin film has 
showed low reflectance among the different rGO-Co3O4 NC thin films 
prepared using 10 dipping. This can be ascribed that the 1.0%-rGO- 
Co3O4 thin film prepared using 1.0 wt% of rGO would be appropriate to 
facilitate a greater number of active sites for high absorption. The 
aforementioned rGO-Co3O4 NC thin films prepared using 10 dipping 
have disclosed high reflectance when compared to the rGO-Co3O4 NC 
thin films produced by 20 dipping as a consequence of film thickness 
(Fig. 4(a and b)). 

The absorptance values of rGO-Co3O4 NC thin films were calculated 
from their respective reflectance spectra and their corresponding emit
tance values were measured using emissometer, which are shown in 
Fig. 5(a and b). The GO content is considered as a chief factor that in
fluences optical properties of the rGO-Co3O4 NC thin films. The SEM 
images (Fig. 3(d, f and h)) show that the rGO act as host material for 
spherical shaped Co3O4 grains and as a consequence, the absorbance of 
the resultant rGO-Co3O4 NC thin films has increased. In the rGO-Co3O4 
NC thin films, the exterior shows pores in the coated surface, which also 
help to increase the absorptance of the thin films since the holes could 
help to happen multiple reflection within the thin films. The rGO-Co3O4 
NC thin films prepared using different dipping and diverse content of GO 
had shown different absorptance (α = 70.56 to 89.95) and emittance (ε 
= 4.4 to 4.6) values. From the calculated absorptance values, when the 
concentration of GO increases, the absorptance value of rGO-Co3O4 NC 
thin films increases. This suggests that optical properties of rGO-Co3O4 
NC thin films is mainly influenced by the GO content. The calculated 
solar spectral selectivity of the rGO-Co3O4 NC thin films has increased 
from 15.68 to 19.55 (Table 2), which revealed that the prepared rGO- 
Co3O4 NC thin films have good solar selectivity. The comparison of 
optical properties of the rGO-Co3O4 NC thin film with previous reports 
are given in Table 3. 

3.5. Raman spectroscopy analysis 

Fig. 6 shows Raman spectra of pure Co3O4 thin film and 0.1%-rGO- 
Co3O4 and 2.0%-rGO-Co3O4 NC thin films. The Raman peaks were 
observed for Co3O4 thin film at 485, 519, 621, and 695 cm− 1. The spinel 
structure was predicted by these Raman active peaks for Co3O4. The 

Table 3 
Comparison of optical properties of rGO-Co3O4 NC thin film with previous reports.  

Solar 
Selective 
Absorber 

Substrate Coating 
Method 

Absorptance, 
α (%) 

Emittance, 
ε (%) 

Selectivity, (ξ) Reference 

Co–Al2O3 cermet Stainless steel Spray pyrolysis 82.70 6.0 13.69 [45] 
rGO-NiO NC Al Dip-coating 88.03 4.5 19.56 [36] 
ZrB2/Al2O3 Stainless steel Magnetron sputtering 92.00 11.0 8.36 [46] 
GO-CuxCoyOz Al Dip-coating 86.14 2.97 29.01 [39] 
TiAlN/AlON tandem Cu Magnetron sputtering 94.20 5.0 18.80 [47] 
HfB2/Al2O3 tandem Stainless steel Magnetron sputtering 92.00 10.9 8.44 [48] 
Al/Si3N4/(Ti/Si3N4)2 Silicon Magnetron sputtering and PECVD 94.00 7.0 13.40 [49] 
Bilayer WOx/SiO2 Al Magnetron sputtering 92.30 5.4 17.09 [7] 
Ag–CuO NC Stainless steel Dip-coating 92.00 5.0 18.40 [50] 
Cu/TiNxOy/Si3N4/SiO2 Glass Magnetron sputtering 97.50 3.7 26.20 [51] 
rGO-Co3O4 NC Al Dip-coating 89.95 4.4 19.55 Present Work  

Fig. 6. Raman spectra of pure Co3O4 thin film, 0.1%-rGO-Co3O4 and 2.0%- 
rGO-Co3O4 NC thin films. 
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octahedral sites characteristics were assigned for the Raman mode at 
695 cm− 1 (A1g), continuously the peaks at 485 cm− 1 (Eg) and 621 cm− 1 

(F2g) are possibly associated with combined vibrations of tetrahedral site 
and octahedral oxygen motions. To take into consideration and signifi
cance of the rGO content on the Raman spectra, the measurement of 
Raman spectra were recorded for the thin film samples before and after 
the incorporation of rGO. The Raman peaks for low and high contents of 
rGO were obtained for 488, 527, 624, and 697 cm− 1 and 481, 522, 619, 
and 689 cm− 1, respectively. These peak positions are slightly changed 
from the peaks observed for the pure Co3O4 thin film. This alteration 
could be caused by the composition of rGO. On the other hand, the in
tensity of the nanocomposite samples has higher value than the pure 
Co3O4, subsequently there is also intensity difference between the thin 
films having low and high rGO content. The Raman spectrum obtained 
for the samples show broad bands for Co3O4 thin film and narrow bands 
for composite thin films, especially the 2.0%-rGO-Co3O4 NC thin film 
has relatively intense narrow bands when compared to other thin film 
samples. These results are matched with the crystalline size calculated 
from XRD data by Scherrer’s formula, which exhibits that the 2.0%-rGO- 
Co3O4 NC thin film has larger crystallite size (76.41 nm) [20,52,53]. 

4. Conclusion 

Reduced Graphene Oxide (rGO) modified cobalt oxide (Co3O4) NC 
thin films on aluminum substrates were prepared through dip-coating 
technique for solar selective absorbers. XRD patterns of rGO-Co3O4 NC 
thin films exhibited diffraction peaks corresponding to face centered 
cubic structured Co3O4 and rGO. SEM images showed morphology of the 
prepared samples have spherical shaped grains with rough surface. EDX 
spectra disclosed the samples with absence of impurities. The presence 
of rGO in the rGO-Co3O4 NC thin films were further concretely 
confirmed by Raman analysis. The optical properties investigated by 
UV–Vis–NIR reflectance spectroscopy revealed that the rGO-Co3O4 NC 
thin film with rGO content of 1.0 wt% has high absorptance of 89.95, 
thermal emittance of 4.6 and consequently high solar selectivity of 
19.55. 
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