

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

PROGRAMME OUTCOMES AND COURSE OUTCOMES

2022 - 2023

NAME OF THE PROGRAMME: B.Sc Physics

PROGRAMME CODE: UAPH

Programme Outcomes:

PO1	Apply acquired scientific knowledge to solve complex issues.
PO2	Attain Analytical skills to solve complex cultural, societal and environmental issues
PO3	Employ latest and updated tools and technologies to analyse complex issues
PO4	Professional Ethics that foster Community, Nation and Environment Building Initiatives.

Course Outcomes:

Course Code	Course Title	Course Outcomes
19P1CC1	Mechanics And Properties Of Matter	CO1: Explain gravitational force, gravitational field, gravitational potential and gravitational energy CO2: Analyze the variation of 'g' with latitude, altitude, depth and rotation of earth and Identify the types of satellite orbits and compute

(Autonomous)

		the parameters of satellite motion.
		CO3:Discuss the elastic properties of materials and compute the
		Young's modulus of a beam
		CO4: Describe surface tension and capillarity property of liquids and
		identify its applications.
		CO5: Explain the dynamics of fluid motion and its applications and
		analyse the viscose property of liquids.
		CO1: Students will be able to analyse a microscopic approach and seek
	Thermal Physics	to account for the macroscopic properties of a gas in terms of
		properties of its molecules
		CO2: Students will be able to explain the classical Maxwell's
10D1CC0		distribution law of velocity and its inference.
19P1CC2		CO3: Students will be able to describe molecular collisions and its
		mean free path , understand the process of thermal conductivity,
		viscosity and diffusion in gases
		CO4: Students will be able to depict the manner in which the energy
		changes takes place and outline the different methods to produce low
		temperature

(Autonomous)

		CO5: Students will be able to demonstrate the liquefaction of gases and
		explain the nature of gases in the neighbourhood of absolute zero
		temperature.
19P1CC3	Major Practicals I	Students will be able to determine the properties of materials relevant
1311003	major rracticals r	to the theory learnt in core courses.
		CO1: Students will be able to understand simple harmonic motion and
		forced oscillations
		CO2: Students will be able to understand Principle of Superposition of
	Oscillations And Waves	waves
19P2CC4		CO3: Students will be able to apply interference, stationary waves and
		beats of sound waves
		CO4: Students will be able to ExplainDoppler effect in sound and
		identify relative motion and solve problems
		CO5: Students will be able to study the ultrasonic waves generation
		and application of the same and outline the physics of voice generation
		and hearing
19P2CC5	Applied Mechanics	CO1: Students will be able to demonstrate an understanding of central
1912000	Applied Mechanics	forces and explain Kepler's laws of Planetary motion

(Autonomous)

		CO2: Students will be able to compute the path of projectile launched
		with horizontal and vertical velocity components in the Earth's gravity
		CO3: Students will be able to evaluate the interrelationship between
		energy and work
		C04: Students will be able to describe the motion of the center of mass
		of an object, state the conservation principles involving momentum
		and explore its applications, analyse collisions between two objects
		CO5: Students will be able to apply law of conservation angular
		momentum appropriately in rigid body rotations, relate the rotational
		and translational parameters based on rotational kinematics.
19P2CC6	Major Practicals II	Students will be able to determine the properties of materials relevant
1912000	Major Fracticals II	to the theory learnt in core courses
		CO1: students will be able to Calculate electric field for a distribution
	Electromagnetism	of charges by applying method of calculus.
19P3CC7		CO2: students will be able to Evaluate electric field for problems
1953007		involving symmetry by using Gauss's law
		CO3: students will be able to Estimate the magnetic field of a current
		using BiotSavarat law and Ampere's law

(Autonomous)

		CO4: students will be able to Describe the working of generators and
		motors based on Faraday's law of induction and Lenz law. Also, they
		will be able to classify magnetic materials based on magnetic dipole
		moments
		CO5: students will be able to Comprehend Maxwell's equations and
		generation of electromagnetic waves
		CO1: Students will be able to Define the different parameters of crystal
		system and explain the basic concepts.
	Solid State Physics	CO2: Students will be able to Describe the various magnetic
		behaviours of solids
19P3CC8		CO3: Students will be able to Explain the working of dielectric
1973000		materials.
		CO4: Students will be able to Understand the basic concepts in super
		conductivity.
		CO5: Students will be able to Describe working and various
		applications of superconductors.
19P3CC9	Major Practicals III	Students will be able to Understand and Analyse electric, magnetic and
1910009	Major Practicals-III	electromagnetic principles and laws through experiments

(Autonomous)

		CO1: Students will be able to Acquire basic knowledge of PN
		junction diode, different rectifiers and filters
		CO2: Explain different transistor configuration and various biasing
		circuits
19P4CC10	Analog Electronics	CO3: Obtain the knowledge of transistor amplifier and analyse using
19140010	Analog Electronics	DC and AC load line
		CO4: Elucidate the concept of feedback in amplifiers and design
		various types of oscillators
		CO5: Describe the parameters of OP-AMP and to design OP-AMP
		circuits
		CO1: Students will be able to Analyze properties and determinants of
	Mathematical Physics	matrix to solve problem
		CO2: Apply vector calculus to solve Physics Phenomena
22P4CC11		CO3: UtilizeFourier series to represent waves of different shapes
		CO4: Comprehend idea of modeling physics phenomena
		CO5: Analyse analytic function and to express trigonometric and
		hyperbolic functions.
19P4CC12	Major Practicals IV	Students will be able to Understand and electronics principles and

(Autonomous)

		laws through experiments
		CO1: Students will be able to Demonstrate the knowledge in
		Combinational logic circuits and Flip-Flops and apply skills in solving
		problems and drawing Karnaugh Maps.
		CO2: Students will be able to Analyse the working of different types of
		registers and counters
10DECC12	Digital Electronics And	CO3: Students will be able to Explain the concepts involved in D/A
19P5CC13	Communication	Conversion and A/D Conversion, continuous A/D conversion and A/D
		techniques
		CO4: Students will be able to Explicate the different types of analog
		modulation techniques in communication systems.
		CO5: Students will be able to Communicate clearly the principles of
		digital modulation and Satellite communication
		CO1: Students will be able Gain knowledge on interference of light
	Optics	waves and understand K1 PSO1& PSO2 the interference in a wedge
19P5CC14		shaped film, Newton's rings and describe interference of light due to
		division of wave front,
		CO2: Students will be able to Explain Diffraction of light, Diffraction at

(Autonomous)

		an opaque disc and the construction and working of zone plate
		CO3: Students will be able to Insight of the Fraunhofer diffraction at a
		single slit and double slit, Resolving Power of Prism, Grating, telescope
		and Microscope.
		CO4: Students will be able to Deduce the concepts of Polarization,
		Brewster's and Malus law and explain production and analysis of
		polarized light.
		CO5: Students will be able to Insight of the Infrared spectroscopy,
		ultraviolet spectroscopy,quartz spectrograph, Raman
		Spectroscopy,Quantum theory of Raman effect, Nuclear magnetic
		resonance.
19P5CC15	Major Practicals V	Students will be able to understand physical laws using appropriate
19130013	(Electronics)	equipments through experiments
		Students will be able to understand electrical, thermal and optical
	Major Practicals VI (Non Electronics)	measurements like Refractive index of a liquid, Determination of
19P5CC16		wavelength of Fraunhofer lines using Grating, Determination of Dusing
		Hartmann's Interpolation Formula, determination of \square by forming
		Newtens rings and characteristics of a thermistor.

(Autonomous)

		CO1: Analyse the basics of thermodynamic systems and derive the
		internal energy equation as Pressure, Volume and Temperature as
		independent
		CO2: Explain the entropy and the second law of thermodynamics and
		deduce the Tds equations and discuss the properties of an ideal gas
10000017	Thermodynamics And	and Vander Waals gas
19P6CC17	Statistical Mechanics	CO3: Gain knowledge on thermodynamic potentials, Helmoltz and
		Gibbs functions and derive Maxwell's relations
		CO4: Distinguish Bose Einstein, Fermi-Dirac statistics, Maxwell-
		Boltzmann Statistics and study their distribution functions.
		CO5: Demonstrate and explain the application of quantum statistics
		CO1: Describe the wave properties of particles
		CO2: Arrive at Schrodinger wave equations and apply it for accounting
10060019	Modern Physics	the behaviour of atoms, nuclei and particles on the basis of it.
19P6CC18		CO3: Explain the vector atom model and understand the role of spin in
		atomic phenomena
		CO4: Discuss the properties of atomic nuclei and interpret its behavior

(Autonomous)

		through detailed models like liquid drop and shell model
		CO5: Explain the concepts of relativity and explain the intimate
		relationships between space and time, mass and energy.
19P6CC19	Major Practicals VII	Students will be able to understand physical laws using appropriate
19100019	(Electronics)	equipments through experiments
		Students will be able to understand electrical, thermal and optical
		measurements like Refractive index of a liquid, Determination of groove
19P6CC20	Major Practicals VIII	spacing of CD,Determination of \square wavelength using biprism and calcite
19700020	(Non Electronics)	prism ,determination of thickness of the wire using Airwedge,
		numerical aperture of optical fiber, conversion of galvanometer into
		voltmeter etc.
21P1ACC1		CO1: Students will be able to Define and discuss about the simple
ZITIACCI		harmonic waves and its oscillations and laws of transverse vibrations
01D2ACM1	Alliad Dlassica I	of strings.
21P3ACM1	Allied Physics - I	CO2: Students will be able to Classify and describe the properties of
01D2ACC1		matter such as electricity, viscosity and surface tension.
21P3ACG1		CO3: Students will be able to Summarise the basic concepts of thermal

(Autonomous)

		physics and apply the laws of thermodynamics in higher learning
		concepts such as entropy and its reversible nd irreversible process.
		CO4: Students will be able to Explain the principles and laws used in
		electricity and magnetism those are useful in defining the energy of a
		capacitor and magnetic effect of electric current.
		CO5: Students will be able to Demonstrate the properties of
		geometrical optics and explain the refraction and dispersion through a
		prism.
		CO1: students will be able to Define the different types of number
		systems and explain the basic and universal logic circuits
		CO2: students will be able to Simplify the logic expressions using
		Boolean laws and Kmap
21P1ACB1	Digital Principles And	CO3: students will be able to describe the principles behind the data
	Applications	processing and arithmetic circuits
		CO4: students will be able to explain the working of basic flipflops and
		design master slave flipflops
		students will be able to Understand the working of shift registers and
		counters

(Autonomous)

		CO5: students will be able to describe D/A and A/D conversion
		techniques
21P1ACC2		Students will be able to determine the properties of materials relevant
/ 21P3ACM2 /	Allied Physics Practicals I	to the theory learnt in core courses
21P3ACG2		
21P4ACM3 / 21P2ACC3 / 21P4ACG3	Allied Physics- II	CO1: Students will be able to categorize and clarify the different optical phenomena of interference, diffraction, polarization. CO2: Students will be able to explain the atom model and calculate the total energy of an atom and account for the spectral series of hydrogen atom. CO3: Students will be able to elucidate the models of nuclear structure and to learn the principle behind atom bomb, nuclear reactors. CO4: Students will be able to summarize the working principle of p-n junction diode in forward and reverse biasing, its V-I characteristics, the Zener Diode, n-p-n transistor in common emitter characteristics. CO5: Students will be able to classify the number system and

(Autonomous)

		demonstrate the skill in conversion of Number systems, Boolean
		algebra and its associated laws.
21M4ACM		Students will be able to determine the properties of materials relevant
4/		to the theory learnt in core courses
21P2ACC4	Allied Physics Practical	
/	II	
21P4ACG4		
		CO1: Acquire knowledge of Microprocessor Architecture
	Microprocessor	CO2: Comprehend the instructions in assembly language program
10DCME1		CO3: Describe the various operations and debugging
19P6ME1		CO4: Understand the programming techniques in microcontroller
		CO5: Explore the role of counters and time delay
		CO1: Acquire knowledge of terminologies, modeling and measurements
19P6ME2	Medical Physics	in medical physics. Also application of low frequency and high
	-	frequency electricity in medicine .
		CO2: Comprehend properties of light in medicine and to study various

(Autonomous)

		applications of light in medicine
		CO3: Describe the role of nuclear medicine techniques for diagnosis
		and therapy
		C04: Understand the radiation protection in medicine
		CO5: Explore the role of computers in diagnosis, testing and therapy
	Opto Electronics	CO1: Define the different parameters of fiber optics system and explain
		the basic concepts.
		CO2: Solve the problems in various losses of fibers
19P6ME3		CO3; Understand the working of LED, semiconductor lasers and PN
TALOMES		diode.
		CO4: Describe working and various parameters of photo detectors
		CO5: Understand the working and application of optical fiber sensors.
19P6ME4	Energy Physics	CO1: Distinguish the energy resources as conventional and
		nonconventional and describe each one of its types.
		CO2: Describe the physics behind harnessing solar radiation as

(Autonomous)

		renewable energy resource and its applications
		CO3: explain the basic concepts of geothermal energy,
		magnetohydrodynamics and fuel cell.
		CO4: describe the energy conversion principles of wind , biomass and
		ocean tides and waves
		CO5: suggest energy options for developing countries based on energy
		conservation approach.
		CO1: Discuss and illustrate the importance of paying attention to the
		basic units of physical quantities and the standards accepted for their
		measurement
		CO2: Describe the motion in terms of particle's position, velocity and
19P1NME/	Physics In Everyday	acceleration and analyse the cause of motion
19P2NME	Life	CO3: Understand the concepts of heat and electromagnetic radiation
		waves, sound, electricity, magnetism and explore their nature.
		CO4: Explain the characteristics of Sound
		CO5: Comprehend the attributes of electricity and magnetism.

(Autonomous)

19P3SB1	Biomechanics	CO1: Students will be able to acquire a skill to apply the laws of kinematics to biological systems. CO2: Students will be able to Identify the anatomical pulleys and lever systems CO3: Students will be able to Access the types of levers in our body CO4: Students will be able to Explain how the biological machines inside our body CO5: Students will be able to Discuss different kinds of activities, equilibrium and stability of the body using law of physics
22P4SB2	Solar Cell and its Applications	CO1: Acquire a skill on various technologies of solar cell CO2: Acquire a knowledge on thin film technologies CO3: Gain knowledge about the Applications of PV cells CO4: Explain how to use solar in power plants CO5: Discuss about PV Solar Design
19P5SB3	Physics of Measuring Instruments	CO1: Describe the qualitative aspects of thermodynamic quantities temperature and its measurement techniques.

(Autonomous)

		CO2:Describe the qualitative aspects ofpressure , density and humidity
		and their measurement technique.
		CO3: Explain a basic idea of aircraft instrumentation
		CO4: list the factors affecting wind speed and gain insight on wind
		speed measurement techniques
		CO5: Discuss the mechanical and electrical measurements comprising
		of temperature transducers, biosensors, chemical and optical sensors.
	Physics of medical instruments	CO1: Explain the physics of some common lung disease and
		instrumentation of Sphygmomanometer
		CO2: Understand the application of sound in medicine and
		demonstrate the functioning of Stethoscope
19P5SB4		CO3: Study the application of Lasers in the field of medicine.
1973564		CO4: Gain knowledge on the construction, working principle of
		instruments such as Ophthalmoscope &Keratometer
		CO5: Learn about the applications of the cardio vascular
		instrumentation and medical instrumentation utilising the principle of
		electricity within the body .

(Autonomous)

		CO1: Discusses the basic physics behind astronomical measurements
		and material characterization
		CO2: Explains the principles behind astronomical instruments and
		their main parts
1000000	Physics of Advanced	CO3: Explains the principles behind astronomical measurement
19P6SB5	Instrumentation	techniques
		CO4: Describes the principles and working of electron microscopy
		CO5: Characterizes the structural properties of materials using X ray
		diffraction measurements
	Physics of Advanced Medical Instruments	CO1: Understand the working principle of medical instruments used in
		X- ray, radiography and endoscopy
		CO2: Comprehend the Principle and application of Computed
10000000		Tomography, Magnetic Resonance Imaging, Linear Accelerator in
19P6SB6		medicine
		CO3: Gain knowledge on the medical applications of Ultrasonography
		CO4: Acquire knowledge on applications of Nuclear Medicine such as
		Radio Therapy and the key factors of Radiation protection

(Autonomous)

		CO5: Understand the biomedical Computer Applications.
19UGSLP1	Nanoscience and Nanotechnology	CO1: Find suitable materials to prepare nanomaterials. CO2: Synthesis carbon nanotubes and apply them for various applications CO3: Describe Biological Imaging using Semiconductor nanocrystals. CO4: Explain about nanosensors.
21UGSLP2	Amazing Universe And Indian Space Missions	CO5: Understand the nanoshells, nanopores and Tectodendrimers. CO1: Understand about Astronomy and cosmology. CO2: Explain the Clustered objects in the Universe.
		CO3: Describe thE Indian Space Research Organisation. CO4: Understand basics in rockets. CO5: Explain the Satellites and Saris
21UGIDPB 1	Fundamentals & Programming of Microprocessor 8085	CO1: Understand Evolution of Microprocessors and embedded Microprocessors. CO2: Explain the Microprocessor Architecture. CO3: Describe the various Instruction set of 8085. CO4: Write Assembly language programming.

(Autonomous)

		CO5: Write Programs using looping statements.
		CO1: Understand Big Bang theory and cosmology.
		CO2: Describe the structure of galaxy.
		CO3: Explain basic features of the sun
21UGIDPM	Space Science	CO4: Explain the sidereal and synodic month and various phases of
1		moon.
		CO5: Understand the eclipses, solar and lunar and conditions for the
		occurrences.
	Digital Photography	CO1: Students will be able to Understand the basic phenomena of
		photography.
		CO2: Students will be able to comprehend the basic parts of camera,
		its important control parameters and composition techniques of
		photography
19UGVAP1		CO3: Students will be able to handle SLR camera and apply various
		composition techniques and shoot professional photographs
		CO4: Students will be able to understand the modern technique of
		photoshop and develop skills to manipulate, edit and enhance the real
		time photographs using photoshop.

(Autonomous)

		CO5: Students will be able to prepare their own digital ids and greeting
		cards with photoshop
		CO1: Repair and diagnose the problem of all kinds of faults in Mobile
	Mobile Servicing	Phone.
		CO2: Understand handsets in Hardware as well Software and rectify
		the faults using tools and equipment.
19UGVACP		CO3: Known to uses various softwares in the mobile.
		CO4: Identify the business opportunities in this sector to run a Mobile
		Handset Repairing unit
		CO5: Describe various repairing techniques and apps in the mobile.