

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

PROGRAMME OUTCOMES AND COURSE OUTCOMES

2022 - 2023

NAME OF THE PROGRAMME: B.Sc Mathematics

PROGRAMME CODE: UAMA/ USMA

Programme outcomes:

PO1	Apply acquired scientific knowledge to solve complex issues.
PO2	Attain Analytical skills to solve complex cultural, societal and environmental issues
PO3	Employ latest and updated tools and technologies to analyse complex issues
PO4	Demonstrate Professional Ethics that foster Community, Nation and Environment Building Initiatives.

Course Outcomes:

Course Code	Course Title	Course Outcomes
19M1CC1	Calculus	CO1:Explain higher derivatives and apply Leibnitz theorem to find the nth derivative of functions. CO2: Solve problems on curvature, envelopes, asymptotes and curve tracing.

(Autonomous)

		CO3:Construct reduction formula for trigonometric functions.
		CO4:Define Jacobian, double & triple integrals and apply the knowledge of change
		of variables to solve the problems in double and triple integrals.
		CO5:Construct Fourier series by recalling integration.
		CO1: Explain sets, relations and functions
		CO2: Define binomial series, logarithmic and exponential series and solve
	Classical	problems.
19M1CC2	Algebra	CO3: Identify Relations between the roots and coefficients of equations.
		CO4: Explain the transformations of equations.
		CO5: Recognize the important Methods in finding roots.
		CO1: Explain various data types and operators in C
	Computer Programming In C	CO2: Summarize Decision Making Branching, looping statements and arrays
21B1ACM1		CO3: Categorize function, pointers and structures.
		CO4: Describe Strings and String Handling Functions.
		CO5: Create C program for real life problems
	Allied Mathematics – I	CO1: Find summation of any series.
21M1ACP1		CO2: Explain the concepts of theory of equations.
		CO3: Calculate roots of equations using different methods.

(Autonomous)

		CO4: Expand trigonometric functions CO5: Apply the Leibnitz's theorem to find
		the n th derivative
		CO1: Solve problems in differential equations of first order.
		CO2: Classify homogeneous and Non homogeneous differential equations of
10110000	Differential	second order and solve problems.
19M2CC3	Equations	CO3: Solve differential equation problems using Laplace transform.
		CO4: Define Partial differential equations and solve problems.
		CO5: Solve problems on Growth,decay and chemical reactions
	Statistics	CO1: Solve problems on moments, skewness, kurtosis and correlation
		CO2: Construct regression lines and curve equation
21M2CC4		CO3: Explain random variables and probability density function
		CO4: Solve problems on expectation.
		CO5: Define and explain analysis of time series and index numbers.
	Object Oriented Programming With C++	CO1: Define the features of C++ supporting object oriented programming
		CO2: Describe classes and objects
21B2ACM3		CO3: Distinguish Constructors and Destructors and Explain overloading concepts
		CO4: Classify Inheritance in C++
		CO5: Design C++ programs for real life situations

(Autonomous)

19M1NME	Quantitative Aptitude	CO1: Solve problems on ages
		CO2: Illustrate profit and loss with examples CO3: Explain partnership and
		related problems
19M2NME		CO4: Discuss problems on time and work
		CO5: Solve problems on time and distance
		CO1: Solve linear differential equations
		CO2: Solve second order linear differential equations with variable coefficient.
	Allied Mathematics – Ii	CO3: Define Laplace transform and apply it to solve differential equation.
21M2ACP2		CO4: Define Laplace transform and apply it to solve differential equation.
		CO5: Apply line, volume and surface integrals to verify the Gauss divergence and
		Stoke's theorem.
		CO1: Classify groups and explain their properties
	Modern Algebra	CO2: Describe cosets and Lagrange's theorem
19M3CC5		CO3: Explain the characteristics of different types of rings and their properties
		CO4: Classify various types of ideals
		CO5: Construct polynomial rings over UFD
10110000	Advanced Statistics	CO1: Classify discrete and continuous random variables and characteristics of
19M3CC6		Binomial distribution and Poisson distribution

(Autonomous)

		CO2: Explain and illustrate the properties of Normal distribution and solve
		variety of problems.
		CO3: Distinguish between a population and a sample and explain testing of
		hypothesis.
		CO4: Explain chi square distribution, t- distribution and describe their various
		applications is Statistics
		CO5: Define F- distribution and apply it to solve problems in analysis of variance
		CO1: Explain Beta and Gamma functions and their properties.
	Applications Of Calculus And Differential Equations	CO2: Solve the problems in Maxima minima of functions of two variables.
19M3SB1		CO3: Describe trajectories and orthogonal trajectories.
		CO4: Solve Brachistochrone problems
		CO5: Discuss dynamical problems with variable mass
		CO1: Appraise rank of a matrix, Eigen value and Eigen vectors
	Allied Mathematics – I	CO2: Obtain higher derivatives of functions CO3: Solve exact and higher order
21M3ACC1		differential equations
		CO4: Expand trigonometric functions
		CO5: Define Moments, kurtosis and to apply the same
21M3ACB1	Linear	CO1: Define basic concepts of Linear Programming problems

(Autonomous)

	Programming	CO2: Apply various simplex methods to solve linear programming problems
		CO3: Construct dual problem and solve the primal problem
		CO4: Solve transportation problems CO5: Distinguish assignment problem and
		travelling salesman problem
		CO1: Define basic concepts of sequences
		CO2: Explain subsequences and Cauchy sequences
		CO3: Differentiate various convergence test for series and use them to solve
19M4CC7	Sequences And	problems
	Series	CO4: Recognize alternating, convergent, conditionally and absolutely convergent
		series
		CO5: Distinguish the behaviour of series and power series
		CO1: Define Vector Space and explain its various concepts
	Linear Algebra	CO2: Illustrate Inner Product Spaces
19M4CC8		CO3: Define basic concepts of matrices and solve linear equations CO4: Appraise
		Eigen Value and Eigen Vectors of matrices
		CO5: Describe bilinear forms and quadratic
	Trigonometry	CO1:Recall some expansions of Trigonometric functions in sinnx, cosnx, tannx .
22M4SB2		CO2:Recall some expansions of Trigonometric functions in sinnx, cosnx,

(Autonomous)

		sinmxcosnx
		CO3:Recall some expansions of Trigonometric functions in $\cos \theta$, $\sin \theta$ and $\tan \theta$ in
		a series of ascending powers of θ
		CO4: Do the problems in hyperbolic functions
		CO5: Explain Logarithms of Complex quantities.
		CO1: Describe the concepts of groups, subgroups and normal subgroups
	Allied Mathematics – Ii	CO2: Compute the definite integral and construct reduction formula.
		CO3: Solve differential equations using Laplace transforms.
21M4ACC2		CO4: Explain the concepts of correlation, rank correlation coefficient and
		regression.
		CO5: Apply the principle of least squares to fit a straight line and parabola.
		CO1: Recall relations and functions
	Algebra And Graph Theory	CO2: Appraise Eigen values and Eigen Vectors
21M4ACB2		CO3: Define various types of graphs
		CO4: List out the characterization of trees
		CO5: Apply different algorithms to find the shortest path in graphs
19M5CC9	Real Analysis	CO1: Describe fundamental ideas and theorems on Metric spaces

(Autonomous)

		CO2: Distinguish the continuity, discontinuity and uniform continuity of
		functions
		CO3: Demonstrate the connectedness and its properties
		CO4: Explain the concept of compactness and their roles in the real line
		CO5: Organize theorems in a correct mathematical way
		CO1: Explain the concept of the forces and static equilibrium conditions
		CO2: Describe the perception of parallel forces and moments
	Statics	CO3: Classify a thorough force analysis of rigid bodies and simple structures in
1015-0010		equilibrium
19M5CC10		CO4: Illustrate and give examples of couples and equilibrium of three forces
		acting on a rigid body
		CO5: Solve problems related to friction forces in various applications. Summarize
		the concept of equilibrium of strings to prepare and demonstrate the models.
		CO1: Formulate linear programming problems and solve by graphical method
	Linear Programming	CO2: Classify simplex, two phase and
19M5CC11		Big - M method to solve linear programming problems
		CO3: Illustrate Duality in Linear programming
		CO4: Recognize and formulate transportation, assignment problems and find the

(Autonomous)

		optimal solution
		CO5: Define two person zero sum game, saddle point and solve problems.
		CO1: Define graphs and operations on graphs.
		CO2: Summarize and understand various techniques in proving theorems on
		connectedness.
103550010		CO3: Create examples and counter examples to illustrate Eulerian and
19M5CC12	Graph Theory	Hamiltonian graphs with examples
		CO4: List out the characterization of trees and construct various matchings for a
		graph.
		CO5: Solve problems involving planarity and colourability.
		CO1: Explain various data types and operators in C
	Computer Programming In C	CO2: Summarize Decision Making Branching, looping statements and arrays
19M5ME1		CO3: Categorize function, pointers and structures
19MSME1		CO4: Describe Strings and String Handling Functions.
		CO5: Create C program for real life problems
	Object Oriented	CO1: Define the features of C++ supporting object oriented programming
19M5ME2		CO2: Describe classes and objects
	Programming With C++	CO3: Distinguish Constructors and Destructors and Explain overloading concepts

(Autonomous)

		CO4: Classify Inheritance in C++
		CO5: Design C++ programs for real life situations
		CO1: Solve problems on Data Interpretation
	Data	CO2: Identify Analogy
19M5SB3	Interpretation And Analytical	CO3: Classify coding and Decoding
	Aptitude	CO4: Solving Problems using ven diagram
		CO5: Identify missing numbers and character
		CO1: Explain the fundamentals of cryptography
	Cryptography	CO2: Describe Security Services
19M5SB4		CO3: Explain Symmetric Cipher Model
		CO4: Discuss Block Ciphers
		CO5: Explain Block Cipher Design Principles
		CO1: Explain the concept of bilinear transformations.
	Complex Analysis	CO2: Identify continuous, differentiable and analytic functions
19M6CC13		CO3: Solve problems on complex integration
		CO4: Compute analytic functions in series form and classify singularities
		CO5: Evaluate definite integrals using Residues
22M6CC14	Dynamics	CO1: Describe the behaviour related to projectiles

(Autonomous)

		CO2: Apply the laws and principles governing dynamics of the system in
		physical reality.
		CO3: Describe the collision of elastic bodies.
		CO4: Explain Simple harmonic motion and its properties.
		CO5: Explain the motion under the action of central forces.
		CO1: Define sequencing problem and apply it to solve real life problems
		CO2: Solve problems in decision making
19M6CC15	Operations Research	CO3: Apply inventory control to solve practical problems.
		CO4: Classify queuing models
		CO5: Explain CPM and PERT to plan schedule and control project activities.
	Fuzzy Mathematics	CO1: Explain the difference between crisp set and fuzzy set theory
		CO2: Identify the methods of fuzzy logic
19M6ME3		CO3: Recognize the operations on fuzzy sets and combination of fuzzy operations
		CO4: Illustrate and give examples related to fuzzy relations
		CO5: Build sufficient understanding of fuzzy numbers and α – cuts
	Theory Of Numbers	CO1: Explain prime number and its distributions
19M6ME4		CO2: Define and interpret the concepts of divisibility, greatest common divisor,
		relatively prime integers and Fibonacci sequence

(Autonomous)

		CO3: Recognize the congruences, properties of congruences, special divisibility
		tests and Chinese remainder theorem.
		CO4: Explain the Law of Quadratic reciprocity, Quadratic Congruence with Prime
		and Composite Modulus
		CO5: Explain Fermat's theorem and its applications
19M6ME5	Lattices And Boolean Algebra	CO1: Recall Posets and classify Lattices.
		CO2: Identify ideals and dual ideals in Lattices.
		CO3: Classify Modular and Distributive Lattices.
		CO4: Explain the concepts of Boolean Rings and Boolean Functions
		CO5: Apply Switching Circuits in real life situations.
19M6ME6	Discrete Mathematics	CO1: Describe any statement formula in normal forms
		CO2:Analyse the consistency of premises
		CO3: Classify various functions
		CO4: Solve Recurrence Relations
		CO5: Distinguish Posets and Lattices
19M6SB5	Matlab	CO1: Solve scientific problems using MATLAB
		CO2: Explain Operators in MATLAB
		CO3: Apply MATLAB in Data Analysis

(Autonomous)

		CO4: Construct MATLAB programs for Mathematical Calculations
		CO5: Describe MATLAB tools
19M6SB6	Combinatorial Mathematics	CO1: Explain the concepts of various combinatorial numbers
		CO2: Identify solutions by the technique of generating functions and recurrence
		relation
		CO3: Solve problems on principle of inclusion and exclusion
		CO4: Identify Euler's function and the Menage problem
		CO5: Explain Burnside's lemma and solve problems on Fibonacci numbers