

(Autonomous)

Affiliated to Madurai Kamaraj University
Re-Accredited with 'A++' by NAAC (Cycle - IV)
Mary Land, Madurai - 625018, Tamil Nadu

PROGRAMME OUTCOMES AND COURSE OUTCOMES

2022 - 2023

NAME OF THE PROGRAMME: M.Sc Mathematics

PROGRAMME CODE: PSMA

Programme Outcomes:

PO1	Apply acquired scientific knowledge to solve major and complex issues in the society/industry.
PO2	Attain research skills to solve complex cultural, societal and environmental issues.
PO3	Employ latest and updated tools and technologies to solve complex issues.
PO4	Demonstrate Professional Ethics that foster Community, Nation and Environment Building
	Initiatives.

Course Outcomes:

Course Code	Course Title	Course Outcomes
19PG1M1		CO2: Recall various properties of algebraic structures and explain counting principle. CO2: Describe Sylow's theorems and solve problems
	Algebra	CO3: Distinguish Integral Domain and Euclidean Rings CO4: Classify Rings CO5: Describe basic concepts of Solvable groups

(Autonomous)

		CO1: Describe analysis concepts in Real and Complex Number systems
	Real Analysis	CO2: Explain concepts of metric, compact and connected sets
19PG1M2		CO3: Recall Sequence and series in Real line
		CO4: Differentiate Continuous functions and Uniformly continuous functions
		CO5: Describe Derivatives of functions
		CO1: Define and interpret the concepts of divisibility
		CO2: Explain properties of congruences
19PG1M3	Number Theory	CO3: Apply the Law of Quadratic Reciprocity
		CO4: Classify functions of number theory
		CO5: Solve Linear Diophantine equation
		CO1: Describe the behaviour of a particle, the system of particles and D'Alambert's principle
		CO2: Solve problems using Lagrangian formulation CO3: Explain Hamilton's principle in
19PG1M4	Classical Mechanics	Physical reality
		CO4: Construct Lagrange's equation for non - holonomic system
		CO5: Apply the laws of forces in central orbit to solve Kepler's problem
19PG2M5	Advanced Algebra	CO1: Appraise characteristic roots of linear transformations

(Autonomous)

		CO2: Explain Matrices and Nilpotent transformation
		CO3: Classify transformations
		CO4: Describe various concepts of fields
		CO5: Analyse Galois theory
		CO1: Identify Riemann Integral and Riemann - Stieltjes Integral
		CO2: Explain Uniform convergence of functions
19PG2M6	Advanced Real Analysis	CO3: Define Power Series and Fourier Series
		CO4: Describe Linear Transformations
		CO5: Explain Implicit function theorem and Rank theorem
		CO1: Define Linear differential equations with constant coefficients and prove different
		theorems and solve problems.
		CO2: Solving problems of the n th order in differential equations with variable coefficients
19PG2M7	Differential Equations	CO3: Identify Regular singular points and derive Bessel's Equation.
	_1	CO4: Explain the methods of solving problems in partial differential equations of first order.
		CO5: Form Partial differential equations of the second order and solve problems in partial
		differential equations of second order.

(Autonomous)

		CO1: Build the knowledge of Connectivity in graphs
		CO2: Identify Eulerian and Hamiltonian graphs
19PG2M8	Graph Theory	CO3: Explain Digraphs, Matchings and Factorization in graphs
		CO4: Describe Planarity and Coloring in graphs
		CO5: Define and Explain Domination in graph
		CO1: Distinguish Transportation problem and Assignment problem.
	Optimization Methods	CO2: Classify the methods of finding IBFS to a transportation problem.
19M1EDC/1 9M2EDC		CO3: Explain assignment problem and solve.
		CO4: Solve Sequencing problem.
		CO5: Define two person zero sum game, saddle point and solve problems
		CO1: Explain Lebesgue measurable sets and measurability
	Measure And Integration	CO2: Classify Riemann and Lebesgue Integrals
22PG3M9		CO3: Describe Abstract measure spaces
		CO4: Define Signed Measures and distinguish Hahn Decomposition and Jorden
		Decomposition
		CO5: Explain the concept of measurability in product space

(Autonomous)

		CO1: Explain revised simplex method and solve problems
19PG3M10	Optimization Techniques	CO2: Classify integer programming problem and explain cutting plane and branch and bound methods CO3: Recognize dynamic programming problem and formulate recurrence relation CO4: Distinguish inventory control models
		CO5: Identify Queuing models
19PG3M11	Combinatorics	CO1: Explain the rules of sum and product of permutations and combinations. CO2: Describe distributions of distinct objects into non-distinct cells and partitions of integers. CO3: Identify solutions by the technique of generating functions and recurrence relations with two indices CO4: Solve problems on principle of inclusion and exclusion CO5: Apply Polya's theory using configuration
19PG3M12	Topology	CO1: Classify various Topologies in Topological spaces CO2: Explain connectedness and Components in Topological spaces CO3: Describe compactness in Topological spaces CO4: Identify Seperation axioms

(Autonomous)

		CO5: Explain UrysohnMetrization theorem
		CO1: Distinguish crisp sets and Fuzzy sets
		CO2: Classify operators on Fuzzy sets
21PG3ME1	Fuzzy Sets And Applications	CO3: Describe Fuzzy relations
		CO4: Describe Fuzzy Measures
		CO5: Apply Fuzzy sets in real life situations
		CO1: Identify the various methods of solving simultaneous linear algebraic equations
		CO2: Recognize difference operators and apply the concept of interpolation.
19PG3ME2	Numerical	CO3: Compute the values of the derivatives at some point using numerical differentiation and
191 0011122	Analysis	integration.
		CO4: Solve problems on higher order differential equations using Euler's, Runge- kutta
		methods CO5: Explain Geometrical representation of partial differential quotients
		CO1: Identify continuous, differentiable and analytic functions.
		CO2: Explain Cauchy's theorem for rectangle and Cauchy's integral formula
19PG4M13	Complex Analysis	CO3: Summarize the conditions for a complex variable to be harmonic
		CO4: Compute analytic functions in series form
		CO5: Identify the conditions for a function to be elliptic and bring out its properties

(Autonomous)

		CO1: Classify discrete and continuous distributions
19PG4M14	Statistics	CO2: Describe t, F and limiting distributions
		CO3: Explain statistical tests
		CO4: Summarize maximum likelihood methods
		CO5: Distinguish tests of hypothesis
		CO1: Explain Eulers equation and its applications
	Methods Of Applied Mathematics	CO2: Solve variational problems
19PG4M15		CO3: Distinguish Integral equations.
		CO4: Describe various methods for solving integral equations
		CO5: Solving problems using fourier transforms
	Functional Analysis	CO1: Create knowledge with the basic concepts, principles and methods of functional analysis and its applications.
		CO2: Analyze the concept of normed spaces, Banach spaces, and the theory of linear operators
19PG4M16		CO3: Explain in detail the Hahn-Banach theorem, the open mapping and closed graph theorems
		CO4: Define and thoroughly explain Hilbert spaces and self-adjoint operators
		CO5: Discuss in detail the study of the spectrum of an operator and its properties

(Autonomous)

		CO1: Design the basic concepts in automata theory and formal languages
19PG4ME3	Formal Languages	CO2: Identify different formal language classes and their relationships
		CO3: Transform between equivalent deterministic and non-deterministic finite automata, and
		regular expressions
		CO4: Discuss about the automata, regular expressions and context-free grammars accepting
		or generating a certain language
		CO5: Simplify the theorems in automata theory using its properties
		CO1: Explain Automorphism Group of a Graph
19PG4ME4		CO2: Describe Cayley Graphs
	Algebraic Graph Theory	CO3: Explain Transitive graphs
		CO4: Describe Homomorphism
		CO5: Explain the concept of Matrix Theory