

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

PROGRAMME OUTCOMES AND COURSE OUTCOMES

2021 - 2022

NAME OF THE PROGRAMME: M.Sc Mathematics

PROGRAMME CODE: PSMA

Programme Outcomes (POs)

PO 1	Apply acquired scientific knowledge to solve complex issues.
PO2	Attain Analytical skills to solve complex cultural, societal and environmental issues.
PO3	Employ latest and updated tools and technologies to analyse complex issues.
PO4	Demonstrate Professional Ethics that foster Community, Nation and Environment Building Initiatives.

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

Course Outcomes (COs)

Course Code	Course Title	Course Outcomes
19M1CC1	Calculus	CO1:Explain higher derivatives and apply Leibnitz theorem to find the n th derivative of functions.
		CO2: Solve problems on curvature, envelopes, asymptotes and curve tracing.
		CO3:Construct reduction formula for trigonometric functions.
		CO4:Define Jacobian, double & triple integrals and apply the knowledge of change of variables to solve the problems in double and triple integrals.
		CO5:Construct Fourier series by recalling integration.
19M1CC2	Classical	CO1: Explain sets, relations and functions
	Algebra	CO2: Define binomial series, logarithmic and exponential series and
		solve problems.
		CO3: Identify Relations between the roots and coefficients of
		equations.

(Autonomous)

		CO4: Explain the transformations of equations.
		CO5: Recognize the important Methods in finding roots.
21B1ACM1	Computer	CO1: Explain various data types and operators in C
	Programming In C	CO2: Summarize Decision Making Branching, looping statements and
		arrays
		CO3: Categorize function, pointers and structures.
		CO4: Describe Strings and String Handling Functions.
		CO5: Create C program for real life problems
		CO1: Find summation of any series.
	Allied	CO2: Explain the concepts of theory of equations.
19M1ACP1		CO3: Calculate roots of equations using different methods.
	Mathematics – I	CO4: Expand trigonometric functions
		CO5: Apply the Leibnitz's theorem to find the n th derivative
19M2CC3	Differential Equations	CO1: Solve problems in differential equations of first order.

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO2: Classify homogeneous and Non homogeneous differential
		equations of second order and solve problems.
		CO3: Solve differential equation problems using Laplace transform.
		CO4: Define Partial differential equations and solve problems.
		CO5: Solve problems on Growth,decay and chemical reactions
		CO1: Solve problems on moments, skewness, kurtosis and correlation
	Statistics	CO2: Construct regression lines and curve equation
21M2CC4		CO3: Explain random variables and probability density function
		CO4: Solve problems on expectation.
		CO5: Define and explain analysis of time series and index numbers.
		CO1: Define the features of C++ supporting object oriented
	Object Oriented Programming With C++	programming
21B2ACM3		CO2: Describe classes and objects
		CO3: Distinguish Constructors and Destructors and Explain
		overloading concepts

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO4: Classify Inheritance in C++
		CO5: Design C++ programs for real life situations
		CO1: Solve problems on ages
19M1NME		CO2: Illustrate profit and loss with examples
19M1NME	Quantitative	CO3: Explain partnership and related problems
19M2NME	Aptitude	CO4: Discuss problems on time and work
		CO5: Solve problems on time and distance
		CO1: Solve linear differential equations
	Allied Mathematics –II	CO2: Solve second order linear differential equations with variable
		coefficient.
		CO3: Define Laplace transform and apply it to solve differential
19M2ACP2		equation.
		CO4: Define Laplace transform and apply it to solve differential
		equation.
		CO5: Apply line, volume and surface integrals to verify the Gauss

(Autonomous)

		divergence and Stoke's theorem.
	Modern Algebra	CO1: Classify groups and explain their properties
		CO2: Describe cosets and Lagrange's theorem
		CO3: Explain the characteristics of different types of rings and their
19M3CC5		properties
		CO4: Classify various types of ideals
		CO5: Construct polynomial rings over UFD
	Vector Calculus And Fourier Transforms	CO1: Explain the concept of differentiation of vectors
		CO2: Compute divergence and curl of vectors
19M3CC6		CO3: Solve problems on line and surface integrals
		CO4: Compute Fourier sine and cosine transforms
		CO5: Describe the properties of Fourier transforms
	Applications Of Calculus And Differential	CO1: Explain Beta and Gamma functions and their properties.
19M3SB1		CO2: Solve the problems in Maxima minima of functions of two

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

	Equations	variables.
		CO3: Describe trajectories and orthogonal trajectories.
		CO4: Solve Brachistochrone problems
		CO5: Discuss dynamical problems with variable mass
		CO1: Appraise rank of a matrix, Eigen value and Eigen vectors
		CO2: Obtain higher derivatives of functions CO3: Solve exact and
19C3ACM1	Allied Mathematics – I	higher order differential equations
		CO4: Expand trigonometric functions
		CO5: Define Moments, kurtosis and to apply the same
		CO1: Define basic concepts of Linear Programming problems
		CO2: Apply various simplex methods to solve linear programming
19B3ACM1	Linear Programming	problems
		CO3: Construct dual problem and solve the primal problem
		CO4: Solve transportation problems CO5: Distinguish assignment
		problem and travelling salesman problem

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO1: Define basic concepts of sequences
		CO2: Explain subsequences and Cauchy sequences
19M4CC7/		CO3: Differentiate various convergence test for series and use them to
19G4CC7	Sequences And	solve problems
	Series	CO4: Recognize alternating, convergent, conditionally and absolutely
		convergent series
		CO5: Distinguish the behaviour of series and power series
		CO1: Define Vector Space and explain its various concepts
		CO2: Illustrate Inner Product Spaces
19M4CC8	Linear Algebra	CO3: Define basic concepts of matrices and solve linear equations
		CO4: Appraise Eigen Value and Eigen Vectors of matrices
		CO5: Describe bilinear forms and quadratic
		CO1: Recall some expansions of Trigonometric functions.CO2:
19M4SB2/	Foundations Of Mathematics	Explain Logarithms of Complex Quantities.
19G4SB2	manicinancs	CO3: Describe properties of integers.

(Autonomous)

Affiliated to Madurai Kamaraj University
Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO4: Solve puzzles using Chinese Remainder Theorem. CO5: Analyse
		inequalities.
		CO1: Describe the concepts of groups, subgroups and normal
		subgroups
		CO2: Compute the definite integral and construct reduction formula.
	Allied	CO3: Solve differential equations using Laplace transforms.
19C4ACM2	Mathematics – II	CO4: Explain the concepts of correlation, rank correlation coefficient
		and regression.
		CO5: Apply the principle of least squares to fit a straight line and
		parabola.
		CO1: Recall relations and functions
	Algebra And Graph Theory	CO2: Appraise Eigen values and Eigen Vectors
19B4ACM2		CO3: Define various types of graphs
		CO4: List out the characterization of trees
		CO5: Apply different algorithms to find the shortest path in

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		graphs
		CO1: Describe fundamental ideas and theorems on Metric spaces
		CO2: Distinguish the continuity, discontinuity and uniform continuity
		of functions
19M5CC9	Real Analysis	CO3: Demonstrate the connectedness and its properties
		CO4: Explain the concept of compactness and their roles in the real
		line
		CO5: Organize theorems in a correct mathematical way
		CO1: Explain the concept of the forces and static equilibrium
	Statics	conditions
		CO2: Describe the perception of parallel forces and moments
19M5CC10		CO3: Classify a thorough force analysis of rigid bodies and simple
		structures in equilibrium
		CO4: Illustrate and give examples of couples and equilibrium of three
		forces acting on a rigid body

(Autonomous)

		CO5: Solve problems related to friction forces in various applications.
		Summarize the concept of equilibrium of strings to prepare and
		demonstrate the models.
		CO1: Formulate linear programming problems and solve by graphical
		method
	Linear Programming	CO2: Classify simplex, two phase and
19M5CC11		Big - M method to solve linear programming problems
/		CO3: Illustrate Duality in Linear programming
19G5CC11		CO4: Recognize and formulate transportation, assignment problems
		and find the optimal solution
		CO5: Define two person zero sum game, saddle point and solve
		problems.
		CO1: Define graphs and operations on graphs.
19M5CC12	Graph Theory	CO2: Summarize and understand various techniques in proving

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		theorems on connectedness.
		CO3: Create examples and counter examples to illustrate Eulerian
		and Hamiltonian graphs with examples
		CO4: List out the characterization of trees and construct various
		matchings for a graph.
		CO5: Solve problems involving planarity and colourability.
		CO1: Explain various data types and operators in C
		CO2: Summarize Decision Making Branching, looping statements and
	Computer	arrays
19M5ME1	programming in C	CO3: Categorize function, pointers and structures
	C	CO4: Describe Strings and String Handling Functions.
		CO5: Create C program for real life problems
		CO1: Explain the difference between crisp set and fuzzy set theory
19M5ME2	Fuzzy	CO2: Identify the methods of fuzzy logic
	Mathematics	CO3: Recognize the operations on fuzzy sets and combination of fuzzy

(Autonomous)

Affiliated to Madurai Kamaraj University Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		operations
		CO4: Illustrate and give examples related to fuzzy relations
		CO5: Build sufficient understanding of fuzzy numbers and $\alpha-$ cuts
19M5SB3	Data Interpretation And Analytical Aptitude	CO1: Solve problems on Data Interpretation
		CO2: Identify Analogy
		CO3: Classify coding and Decoding
		CO4: Solving Problems using ven diagram
		CO5: Identify missing numbers and character
	Cryptography	CO1: Explain the fundamentals of cryptography
19M5SB4		CO2: Describe Security Services
		CO3: Explain Symmetric Cipher Model
		CO4: Discuss Block Ciphers
		CO5: Explain Block Cipher Design Principles
19M6CC13	Complex Analysis	CO1: Explain the concept of bilinear transformations.

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO2: Identify continuous, differentiable and analytic functions
		CO3: Solve problems on complex integration
		CO4: Compute analytic functions in series form and classify
		singularities
		CO5: Evaluate definite integrals using Residues
		CO1: Describe the behaviour related to projectiles
	Dynamics	CO2: Apply the laws and principles governing dynamics of the
19M6CC14		system in physical reality.
		CO3: Describe the collision of elastic bodies.
		CO4: Explain Simple harmonic motion and its properties.
		CO5: Explain the motion under the action of central forces.
		CO1: Define sequencing problem and apply it to solve real life
19M6CC15	Operations Research	problems
		CO2: Solve problems in decision making
		CO3: Apply inventory control to solve practical problems.

(Autonomous)

Affiliated to Madurai Kamaraj University

Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV)

Mary Land, Madurai - 625018, Tamil Nadu

		CO4: Classify queuing models CO5: Explain CPM and PERT to plan schedule and control project
		activities.
19M6ME3	Object oriented programming with C++	CO1: Define the features of C++ supporting object oriented programming CO2: Describe classes and objects CO3: Distinguish Constructors and Destructors and Explain overloading concepts CO4: Classify Inheritance in C++ CO5: Design C++ programs for real life situations
19M6ME4	Theory of numbers	CO1: Explain prime number and its distributions CO2: Define and interpret the concepts of divisibility, greatest common divisor, relatively prime integers and Fibonacci sequence CO3: Recognize the congruences, properties of congruences, special divisibility tests and Chinese remainder theorem.

(Autonomous)

		CO4: Explain the Law of Quadratic reciprocity, Quadratic Congruence
		with Prime and Composite Modulus
		CO5: Explain Fermat's theorem and its applications
		CO1: Recall Posets and classify Lattices.
19M6ME5	Lattices and boolean algebra	CO2: Identify ideals and dual ideals in Lattices.
		CO3: Classify Modular and Distributive Lattices.
		CO4: Explain the concepts of Boolean Rings and Boolean Functions
		CO5: Apply Switching Circuits in real life situations.
	Discrete mathematics	CO1: Describe any statement formula in normal forms
19M6ME6		CO2: Analyse the consistency of premises
		CO3: Classify various functions
		CO4: Solve Recurrence Relations
		CO5: Distinguish Posets and Lattices
19M6SB5	Matlab	CO1: Solve scientific problems using MATLAB

(Autonomous)

		CO2: Explain Operators in MATLAB
		CO3: Apply MATLAB in Data Analysis
		CO4: Construct MATLAB programs for Mathematical Calculations
		CO5: Describe MATLAB tools
19M6SB6	Combinatorial mathematics	CO1: Explain the concepts of various combinatorial numbers
		CO2: Identify solutions by the technique of generating functions and
		recurrence relation
		CO3: Solve problems on principle of inclusion and exclusion
		CO4: Identify Euler's function and the Menage problem
		CO5: Explain Burnside's lemma and solve problems on Fibonacci
		numbers