FATIMA COLLEGE (AUTONOMOUS) Re-Accredited with "A" Grade by NAAC (3rd Cycle) 74th Rank in India Ranking 2020 (NIRF) by MHRD Maryland, Madurai- 625 018, Tamil Nadu, India NAME OF THE DEPARTMENT: CHEMISTRY NAME OF THE PROGRAMME: M.Sc., PROGRAMME CODE : PSCH ACADEMIC YEAR : 2021-2022 #### VISION OF THE DEPARTMENT To transform the students entrusted in our hands into competent chemists. #### MISSION OF THE DEPARTMENT - To transfer the knowledge of chemistry with values to create globally competent chemist. - To promote scientific enquiry and inculcate research. - To inculcate in students the skills of problem solving. - To create in them the awareness about ecological concerns. - To train to adopt cost effective and eco friendly green chemistry methodologies. #### PROGRAMME EDUCATIONAL OBJECTIVES (PEO) A graduate of M.Sc. Chemistry programme after five years will be | PEO 1 | Our graduates will be academic, digital and information
literates, creative, inquisitive, innovative and committed
researchers who would be desirous for the "more" in all
aspects | |-------|---| | PEO 2 | They will be efficient individual and team performers who would deliver excellent professional service exhibiting progress, flexibility, transparency, accountability and in taking up initiatives in their professional work | | PEO 3 | The graduates will be effective managers of all sorts of real – life and professional circumstances, making ethical decisions, pursuing excellence within the time framework and demonstrating apt leadership skills | PEO 4 They will engage locally and globally evincing social and environmental stewardship demonstrating civic responsibilities and employing right skills at the right moment. ## **GRADUATE ATTRIBUTES (GA)** Fatima College empowers her women graduates holistically. A Fatimite achieves all-round empowerment by acquiring Social, Professional and Ethical competencies. A graduate would sustain and nurture the following attributes: | | I. SOCIAL COMPETENCE | |-------------|--| | GA 1 | Deep disciplinary expertise with a wide range of academic and digital literacy | | GA 2 | Hone creativity, passion for innovation and aspire excellence | | GA 3 | Enthusiasm towards emancipation and empowerment of humanity | | GA 4 | Potentials of being independent | | GA 5 | Intellectual competence and inquisitiveness with problem solving abilities befitting the field of research | | GA 6 | Effectiveness in different forms of communications to
be employed in personal and professional
environments through varied platforms | | GA 7 | Communicative competence with civic, professional and cyber dignity and decorum | | GA 8 | Integrity respecting the diversity and pluralism in societies, cultures and religions | | GA 9 | All – inclusive skill sets to interpret, analyse and solve social and environmental issues in diverse environments | | GA 10 | Self awareness that would enable them to recognise
their uniqueness through continuous self-assessment
in order to face and make changes building on their
strengths and improving their weaknesses | | GA 11 | Finesse to co-operate exhibiting team-spirit while | |-------|---| | GAII | working in groups to achieve goals | | GA 12 | Dexterity in self-management to control their selves in attaining the kind of life that they dream for | | GA 13 | Resilience to rise up instantly from their intimidating setbacks | | GA 14 | Virtuosity to use their personal and intellectual autonomy in being life-long learners | | GA 15 | Digital learning and research attributes | | GA 16 | Cyber security competence reflecting compassion, care and concern towards the marginalised | | GA 17 | Rectitude to use digital technology reflecting civic and social responsibilities in local, national and global scenario | | | II. PROFESSIONAL COMPETENCE | | GA 18 | Optimism, flexibility and diligence that would make them professionally competent | | GA 19 | Prowess to be successful entrepreuners and become employees of trans-national societies | | GA 20 | Excellence in Local and Global Job Markets | | GA 21 | Effectiveness in Time Management | | GA 22 | Efficiency in taking up Initiatives | | GA 23 | Eagerness to deliver excellent service | | GA 24 | Managerial Skills to Identify, Commend and tap
Potentials | | | III. ETHICAL COMPETENCE | | GA 25 | Integrity and be disciplined in bringing stability leading a systematic life promoting good human behaviour to build better society | | GA 26 | Honesty in words and deeds | |-------|---| | GA 27 | Transparency revealing one's own character as well as self-esteem to lead a genuine and authentic life | | GA 28 | Social and Environmental Stewardship | | GA 29 | Readiness to make ethical decisions consistently from
the galore of conflicting choices paying heed to their
conscience | | GA 30 | Right life skills at the right moment | ## PROGRAMME OUTCOMES (PO) # On completion of M. Sc Programme, The learners will be able to | PO 1 | Apply acquired scientific knowledge to solve major and complex issues in the society/industry. | |------|--| | PO 2 | Attain research skills to solve complex cultural, societal and environmental issues | | РО 3 | Employ latest and updated tools and technologies to solve complex issues. | | PO 4 | Demonstrate Professional Ethics that foster Community,
Nation and Environment Building Initiatives. | ## PROGRAMME SPECIFIC OUTCOMES (PSO) On completion of M.Sc. Chemistry programme, the learners would be able to | PSO 1 | Equip with an in-depth knowledge of varied fields namely Organic Chemistry, Inorganic Chemistry , Physical and nanochemistry. | |-------|---| | PSO 2 | Train in problem solving procedures enables to interpret the experimental data into structures and mechanisms. | | PSO 3 | Provides a tremendous exposure and cultivates analytical and synthesising measures necessary to take up project work in reputed institutions. | | PSO 4 | Programme renders diversified thinking thereby promotes creative skills. | | PSO 5 | to solve the problems that cause a negative impact on
surroundings to pursue salient steps to safeguard
environment | | PSO 6 | Application-oriented input sharpens the skill to undertake CSIR-NET exam. | | PSO 7 | Knowledge with practical dimensions becomes a driving power to undertake research in different areas at a global level. | | PSO 8 | Multi-layered input enables to avail opportunities at chemical, pharmaceutical industries. | |-------|--| | PSO 9 | Becomes a contributing force and development agent in society. | #### FATIMA COLLEGE (AUTONOMOUS), Affiliated to Madurai Kamaraj University Re-Accredited with 'A++' (CGPA 3.61) by NAAC (Cycle - IV) Mary Land, Madurai - 625018, Tamil Nadu # DEPARTMENT OF CHEMISTRY For those who joined in June 2019 onwards (For the academic year 2021-2022) PROGRAMME CODE: PSCH | COURSE
CODE | COURSE TITLE | HRS
/
WK | CREDI
T | CIA
Mk
s | ES
E
Mk
s | TOT
MKs | |----------------|--|----------------|------------|----------------|--------------------|------------| | | SEMESTER - | - I | | | | | | 19PG1C1 | INORGANIC CHEMISTRY- I (Basic concepts, covalent and ionic bonding, solid state and crystallography, and Nuclear chemistry) | 6 | 4 | 40 | 60 | 100 | | 19PG1C2 | ORGANIC CHEMISTRY-I (Reaction mechanism and stereochemistry) | 6 | 4 | 40 | 60 | 100 | | 19PG1C3 | PHYSICAL CHEMISTRY-I (Applied electro chemistry & Statistical thermodynamics) | 6 | 4 | 40 | 60 | 100 | | 19PG1C4 | INORGANIC QUALITATIVE ANALYSIS | 4 | 2 | 40 | 60 | 100 | | 19PG1C5 | ORGANIC QUALITATIVE ANALYSIS | 4 | 2 | 40 | 60 | 100 | | 21C1EDC | ANALYSIS OF SOIL, WATER, FOOD, COSMETICS AND OIL | 3 | 3 | 40 | 60 | 100 | | | LIBRARY | 1 | - | - | - | _ | | Total | | 30 | 19 | | | | | | SEMESTER - II | | | | | | | | | |---------------------------|--|-----|--------|----|----|---------|--|--|--| | 19PG2C6 | INORGANIC CHEMISTRY-II (Advanced coordination chemistry) | 6 | 4 | 40 | 60 | 100 | | | | | 19PG2C7 | ORGANIC CHEMISTRY-II (Elimination and addition reactions, organic spectroscopy and conformational analysis) | 6 | 4 | 40 | 60 | 100 | | | | | 19PG2C8 | PHYSICAL CHEMISTRY-II (Chemical kinetics and Quantum mechanics) | 6 | 4 | 40 | 60 | 100 | | | | | 19PG2C9 | INORGANIC QUANTITATIVE
ANALYSIS | 4 | 2 | 40 | 60 | 100 | | | | | 19PG2C10 | ORGANIC QUANTI <mark>TATIVE</mark>
ANALYSIS | 4 | 2 | 40 | 60 | 100 | | | | | 21C2EDC | ANALYSIS OF SOIL, WATER, FOOD, COSMETICS AND OIL | 3 | 3 | 40 | 60 | 10
0 | | | | | | LIBRARY | 1 | | _ | - | - | | | | | Total | | 30 | 1
9 | | | | | | | | | SEMESTER - | III | | | | | | | | | 19PG3SIC1 | INTERN <mark>SHIP/</mark> SUMMER
PROJECT* | _ | 3 | 50 | 50 | 100 | | | | | 19PG3C11 | ORGANIC
CHEMISTRY-III (Spectroscopy and Pericyclic reactions) | 6 | 5 | 40 | 60 | 100 | | | | | 19PG3C12 | PHYSICAL CHEMISTRY-III (Group Theory, Surface Chemistry and Macromolecules) | 6 | 5 | 40 | 60 | 100 | | | | | 19PG3C13 | GREEN CHEMISTRY | 6 | 5 | 40 | 60 | 100 | | | | | 19PG3CE1
/
19PG3CE2 | CHEMISTRY / BIO | 4 | 4 | 40 | 60 | 100 | | | | | 19PG3C14 | PHYSICAL CHEMISTRY PRACTICALS-I | 6 | 4 | 40 | 60 | 100 | | | | | | (Electrical Experiments-I) | | | | | | |-------------------------------|---|-----|--------|----|----|-----| | | LIBRARY | 2 | | | | | | Total | | 30 | 26 | | | | | | SEMESTER - | IV | | | | | | 19PG4C15 | INORGANIC CHEMISTRY-III (Organometallics & Bio-inorganic chemistry) | 6 | 5 | 40 | 60 | 100 | | 19PG4C16 | ORGANIC CHEMISTRY- 1V (Retrosynthesis, Reactions and Reagents, Natural Products) | 6 | 5 | 40 | 60 | 100 | | 19PG4C17 | PHYSICAL CHEMISTRY-IV (Spectroscopy, Kinetic Theory of gases, Photochemistry And Radiation chemistry) | 6 | 5 | 40 | 60 | 100 | | 19PG4CE3
/
19PG4CE
4 | ANALYTICAL CHEMISTRY / CHEMICAL ENGINEERING | 4 | 4 | 40 | 60 | 100 | | 19PG4C18 | PHYSICAL CHEMISTRY PRACTICALS-II (Non-electrical experiments) | 6 | 4 | 40 | 60 | 100 | | 19PG4CPR | PROJECT*& VIVA VOCE | _ | 3 | 40 | 60 | 100 | | | LIBRARY | 2 | | | | | | Total | | 30 | 2
6 | | | | | | Total | 120 | 90 | | | | #### **OFF-CLASS PROGRAMME** #### **ADD-ON COURSES** | Cours
e
Cod
e | Courses | Hrs
· | Cred
its | Semest e r in which the course is offered | CIA
Mk
s | ES
E
Mk
s | Total
Mark
s | |------------------------|--|------------------------------|-------------------------------|---|----------------|--------------------|--------------------| | | SOFT SKILLS | 40 | 4 | I | 40 | 60 | 100 | | | COMPUTER
APPLICATIONS | 40 | 4 | II | 40 | 60 | 100 | | | MOOC COURSES (Department Specific Courses) * Students can opt other than the listed course from UGC-SWAYAM /UGC /CEC | _ | Minim
u m 2
Credit
s | - | _ | - | | | | COMPREHENSI VE VIVA (Question bank to be prepared for all the papers by the respective course teachers) | - | 2 | IV | - | - | 100 | | | READING
CULTURE | 15
/ Se
me
ste
r | 1 | I-IV | - | - | - | | | TOTAL | | 13 + | | | | | #### • EXTRA CREDIT COURSE - Lab Courses: - o A range of 10-15 experiments per semester - Summer Internship: o Duration-1 month (2nd Week of May to 2nd week of June-before college reopens) #### • Project: - o Off class - Evaluation components-Report writing + Viva Voce (Internal marks-50) + External marks 50 #### • EDC: Syllabus should be offered for two different batches of students from other than the parent department inSem-I &Sem-II ## SELF LEARNING COURSE: OFFERED BY DEPARTMENT OF CHEMISTRY | COURSE | Course TITLE | H
r
s | Credi
ts | Semes
ter in
which
the
course
is
offere
d | CIA
Mks | E S E M k s | Tot
al
Mar
ks | |----------|-------------------------|-------------|-------------|--|------------|-------------|------------------------| | 21PG2SLC | RESEARCH
METHODOLOGY | - | 2 | II | 40 | 60 | 100 | SEMESTER -I For those who joined in 2019 onwards | PROGRAM | COURSE | COURSE TITLE | CATEG | HRS/WE | CREDIT | |---------|---------|--------------------------|---------------|--------|--------| | ME CODE | CODE | | ORY | EK | S | | PSCH | 19PG1C1 | INORGANIC
CHEMISTRY-1 | MAJOR
CORE | 6 | 4 | #### **OBJECTIVES:** - To acquire an in-depth knowledge about the fundamentals and bonding in Inorganic chemistry. - To know more about more acids and bases with their theoretical background - To acquire an extensive knowledge in nuclear Chemistry #### COURSE OUTCOME After the completion of the course the students will be able - CO 1: To analyse all chemical species involved in organic and Inorganic reactions and to identify those as acid andbases - CO 2: To classify the bonds as ionic and covalent and to compare thetheories - CO 3: To categorize the solid systems, to calculate the lattice energy and draw conclusions on their stability - CO 4 : To predict the structures and magnetic properties of Inorganiccompounds - CO 5: To gain indepth knowledge of nuclear reactions, reactors and the applications of radio isotopes in allfields Unit I : Basic concepts of Inorganic Chemistry Unit II : Covalent Bonding Unit III : Solid state and Crystallography Unit IV : Ionic Bonding Unit V: Nuclear Chemistry #### Unit I: Basic concepts of Inorganic Chemistry 18 Hrs The Modern long form of periodic table - Periodic properties of elements - ionic radius - ionisation potential - electron affinity - electronegativity scales. Acids and Bases – Bronsted & Lewis concepts - pH, pK_a, buffer - Acid, base concept in non aqueous solvent - liq.ammonia, HF, anhydrous H₂SO₄ and N₂O₄. Super acids - HSAB principle – Simbiosis – measure and theoretical basis - application. ## Unit II: Covalent Bonding 18Hrs Covalent bonding - Concept of hybridization and resonance - MO theory - MO diagram of diatomic and linear triatomic molecules - bond properties - bond energy - bond order - comparison of VB and MO theories - polarizability - VSEPR theory - shapes of molecules. #### Unit III: Solid state and Crystallography 18 Hrs. Elements of crystallography – symmetry – point groups, space groups, lattices and crystal systems - x-ray diffraction, experimental methods of crystal structure determination, application to Bio-molecules (proteins), structure factor determination – Metallic bond – band theory of solids – electrical and mechanical properties of solids – semi conductors – super conductors. #### Unit IV: Ionic Bonding 18 Hrs. Lattice type - Born Lande equation - Born Haber cycle - radius ratio rule-typical crystal structures - calcite, CsCl, CdI₂, zinc blende & Spirels. Defects in solids - non stoichiomerty, experimental methods of study of stoichiometry, solid state reactions. #### Unit V: Nuclear Chemistry 18 Hrs Nuclear Chemistry – Radioactivity – decay constant – half life period – artificial transmutation – GM counter – scintillation counter – nuclear forces – nuclear fission and fusion reactions – nuclear models – nuclear accelerators – cyclotrons – synchro cyclotrons, betatrons, nuclear reactors – fast breeders – radio isotopes – their applications. #### Reference books - (i) Inorganic chemistry - James.E.Huheey. - Inorganic chemistry J.D. Lee Introduction to solids L. Azaroff, (ii) - (iii) - Elements of Nuclear Chemistry R. Gopalan (iv) - Essentials of Nuclear Chemistry H.J. Arnikar (v) #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | |---------------|---|--------------------|----------------------|------------------|--|--|--|--|--| | UNIT -I | UNIT -I Basic concepts of Inorganic Chemistry 1 | | | | | | | | | | 1.1 | The Modern long form of periodic table | 2 | Chalk &
Talk | Black
Board | | | | | | | 1.2 | Periodic properties of elements | 2 | Lecture | LCD | | | | | | | 1.3 | ionic radius - ionisation potential | 2 | Lecture | PPT | | | | | | | 1.4 | Acids and Bases- Bronsted &
Lewis concepts | 3 | Chalk &
Talk | Black
Board | | | | | | | 1.5 | pH , pKa, buffer | 2 | Chalk &
Talk | Black
Board | | | | | | | 1.6 | Acid, base concept in non aqueous solvent - liq.ammonia, HF, anhydrous H ₂ SO ₄ and N ₂ O ₄ . | 4 | Chalk &
Talk | Black
Board | | | | | | | 1.7 | Super acids - HSAB principle -
Simbiosis - measure and
theoretical basis - application. | 3 | Chalk &
Talk | Black
Board | | | | | | | UNIT-2 | Covalent Bonding | | | | | | | | | | 15Hrs | | | | | | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|-------------------------| | 2.1 | Covalent bonding -
Introduction | 3 | Chalk &
Talk | Black
Board | | 2.2 | Concept of hybridization and resonance | 2 | Chalk &
Talk | Black
Board | | 2.3 | MO theory | 2 | Chalk &
Talk | Black
Board | | 2.4 | MO diagram of diatomic and linear triatomic molecules | 2 | Chalk &
Talk | Black
Board | | 2.5 | Bond properties - bond energy | 3 | Chalk &
Talk | Black
Board | | 2.6 | Bond order - comparison of VB and MO theories | 3 | Chalk &
Talk | Black
Board | | 2.7 | Polarizability - VSEPR theory - shapes of molecules. | 3 | Chalk &
Talk | Black
Board | | UNIT -3 | Solid state and Crystallograpl | hy | 15 Hrs | | | 3.1 | Elements of crystallography | 2 | Chalk &
Talk | PPT&
Black
Board | | 3.2 | symmetry - point groups, space
groups | 2 | Chalk &
Talk | PPT &
Black
Board | | 3.3 | lattices and crystal systems - x-
ray diffraction | 2 | Chalk &
Talk | PPT
&Black
Board | | 3.4 | experimental methods of crystal structure determination | 3 | Chalk &
Talk | PPT &
Black
Board | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | |---------------|--|--------------------|----------------------|-------------------------|--| | 3.5 | Application to Bio-molecules (proteins),structure factor determination | 3 | Chalk &
Talk | PPT &
Black
Board | | | 3.6 | Metallic bond - bandtheory of solids | 3 | Chalk &
Talk | PPT&
Black
Board | | | 3.7 | electrical and mechanical properties of solids | 3 | Chalk &
Talk | PPT&
Black
Board | |
 3.8 | Semi conductors - super conductors. | 2 | Chalk &
Talk | Black
Board | | | UNIT -4 | 4 Ionic Bonding 15 H | | | | | | 4.1 | Lattice type - | 2 | Chalk &
Talk | Black
Board | | | 4.2 | Born Haber cycle | 3 | Chalk &
Talk | Black
Board | | | 4.3 | Radius ratio rule-typical crystal structures | 2 | Chalk &
Talk | Black
Board | | | 4.4 | Calcite, CsCl, CdI ₂ , zinc blende & Spirels. | 2 | Chalk &
Talk | Black
Board | | | 4.5 | Defects in solids | 3 | Chalk &
Talk | Black
Board | | | 4.6 | Non stoichiomerty, experimental methods of study of stoichiometry | 3 | Chalk &
Talk | Black
Board | | | 4.7 | Solid state reactions. | 3 | Chalk &
Talk | Black
Board | | | UNIT-5 | Nuclear Chemistry | | | | | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|------------------| | 15 Hrs | | | | | | 5.1 | Nuclear Chemistry -
Radioactivity - Introduction | 2 | Chalk &
Talk | Black
Board | | 5.2 | Decay constant - half life period | 2 | Chalk &
Talk | Black
Board | | 5.3 | Artificial transmutation | 2 | Chalk &
Talk | Black
Board | | 5.4 | GM counter, Scintillation counter | 3 | Chalk &
Talk | Black
Board | | 5.5 | Nuclear forces - nuclear fission and fusion reactions | 2 | Chalk &
Talk | Black
Board | | 5.6 | Nuclear models, nuclear
accelerators - cyclotrons -
synchro cyclotrons | 2 | Chalk &
Talk | Black
Board | | 5.7 | Betatrons, nuclear reactors - fast
breeders | 3 | Chalk &
Talk | Black
Board | | 5.8 | Radio isotopes - their applications. | 3 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |-------------------|------------------------------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | Кз | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | |----------------|----| | Scholastic | 35 | | Non Scholastic | 5 | | | 40 | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are: K1- Remember, K2-Understand, K3-Apply, K4-Analyse ## **EVALUATION PATTERN** | | SCHOLASTIC | | | NON -
SCHOLASTIC | | | MARKS | | | |----|------------|----|----|---------------------|---------|----|-------|--|--| | C1 | C2 | С3 | C4 | C ₅ | CIA ESE | | Total | | | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | | | C1 - Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## **COURSE OUTCOMES** On the uccessful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|-------------------| | CO 1 | To analyse all chemical species involved in organic and Inorganic reactions and to identify those as acid and bases | K1 | PSO1& PSO2 | | CO 2 | To classify the bonds as ionic and covalent and to compare thetheories | K1, K2, | PSO3 | | соз | To categorize the solid systems, to calculate the lattice energy and draw conclusions on their stability | K1 & K3 | PSO5 | | CO 4 | To predict the structures and magnetic properties of Inorganic compounds | K1, K2, K3 & | PSO2 | | CO 5 | To gain in depth knowledge of nuclear reactions, reactors and the applications of radio isotopes in all fields. | K2 & K4 | PSO3 | ## **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO 2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |-----------------|----------|-------|----------|----------|----------|----------|----------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₂ | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO ₄ | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | Mapping of C0s with POs | CO/
PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 2 | 2 | 2 | | CO ₂ | 2 | 3 | 2 | 2 | | CO ₃ | 2 | 2 | 3 | 2 | | CO ₄ | 3 | 2 | 2 | 2 | | CO ₅ | 3 | 2 | 2 | 2 | Note: ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Dr. B. Medona 2. Dr. P. Silviya Reeta Forwarded By (Dr. B. Medona) ## SEMESTER -I For those who joined in 2019 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEG
ORY | HRS/WE
EK | CREDITS | |-----------------------|----------------|---|---------------|--------------|---------| | PSCH | 19PG1C2 | ORGANIC CHEMISTRY-I (REACTION MECHANISM AND STEREOCHEMIST RY) | Major
Core | 6 Hrs. | 4 | **Objective:** The course deals with reaction mechanism of aliphatic and aromatic subtitution reactions, bonding in organic molecules, stereochemistry and natural products chemistry. #### Course outcome: After completion of the course the students should be able: - To interpret the concept of aromaticity and the main properties of aromatic compounds. - To explore reactivity patterns of conjugated ,aromatic molecules and to evaluate the kinetics and thermodynamics controlledreactions. - To define the fundamentals of chirality, prochirality, symmetry elements and applications of atropisomers. - To comprehend of nucleophiles, electrophiles, electronegativity, andresonance - To sketch the preparation and properties of heterocycliccompounds. | UNIT I | a)Bonding in organic compounds | | |----------|--|--------| | | b) structure and reactivity | 18 Hrs | | UNIT II | Introduction to reaction mechanism | 18 Hrs | | UNIT III | Stereochemistry | 18 Hrs | | UNIT IV | substitution reactions | 18 Hrs | | UNIT V | Natural products Chemistry | 18 Hrs | | | a) Heterocyclic compounds b) Carbohydrate. | | | | | | UNIT- I 18 Hrs #### a) Bonding in organic compounds Delocalised bonding, conjugation, cross conjugation, resonance, steric inhibition to resonance- hyperconjugation, tautomerism, concept of aromaticity, anti aromaticity, non aromaticity and homoaromaticity, Huckel's rule, alteranate and nonalternate hydrocarbons, aromaticity in nonbenzenoid compounds- fulvenes, azulenes and tropolones. #### b) Structure and reactivity Electronic effects, hydrogen bonding and steric effects. Factors influencing the dissociation constant of acids and bases, concept of HSAB. Quantitative correlations of structure and reactivity. Hammett equation and linear free energy relationship- Application and limitations. Substituent and reaction constants, Taft equation. #### UNIT- II Introduction to reaction mechanism **18 Hrs** Types of mechanisms, types of reactions, activation energy, transition state, intermediates, energy profile diagram for endergonic and exergonic reactions. Reaction intermediates-carbocations, carbanions, free radicals, carbenes, benzyne and nitrenes-their generation, stability and structure. Methods of determining reaction mechanism-kinetic and non kinetic methods. Kinetic and thermodynamic control of chemical reactions. Principle of microscopic reversibility, Hammond's postulate #### UNIT- III Stereochemistry **18 Hrs** Concept of chirality, recognition of symmetry elements and chiral structure. Molecules with more than one chiral center, threo and erythro nomenclature, Specification of (E,Z and R,S) configuration for compounds with chiral center, axis and planes by CIP notation. Interconversion of sawhorse, Newmann and Fischer formulae. The concept of prochirality, topicity, prostereoisomerism. Equivalent, enantiotopic and diastereotopic ligands and faces of molecules. Stereospecific and stereoselective reactions, optical purity. Atropisomerism-stereochemistry of allenes, spiranes biphenyls, ansa compounds and paracyclophanes. Assymetric synthesis, Crams rule, Prelogs rule. UNIT IV 18 Hrs #### a) Nucleophilic substitution S_N1 , S_N2 and S_Ni mechanism and stereochemistry. Factors affecting the reactivity- effect of substrate structure, nucleophile, (nucleophilicity and basicity), nature of the leaving group and solvent. NGP-involving C=C bond, halogen, carboxylate group, phenyl group, nitrogen and sulphur. Nucleophilic substitution at an allylic carbon, trigonal carbon and vinylic carbon. Ambident nucleophile and ambident substrate. Aromatic nucleophilic substitution- S_NAr , S_N1 and benzyne mechanism. #### b) Electrophilic substitution Arenium ion mechanism, orientation and reactivity in monosubstituted benzene, orientation in benzene rings with more than one substituents, orientation on other ring systems (naphthalene, furan, pyrrole, thiophene, quinoline and Isoquinoline) #### **UNIT V: Natural products chemistry** **18 Hrs** - a) Preparation and reactions of pyrazole, oxazole, thiazole and indole Preparation and reactions of coumarine, flavones and anthocyaninsquercetin, caffeine and theobromine - b) Carbohydrates: Methods of determining the size of sugar rings, structural elucidation of sucrose, maltose, lactose and cellobiose. Aminosugars. #### Reference books: - 1. Jerry
March, Advanced organic chemistry, Reactions, mechanisms and structure, John Wiley and sons 4th edition - 2. Peter Sykes, A guide book to mechanism in organic chemistry, Longman - 3. Peter Sykes, The search for organic reaction pathways, Longman - 4. Carey and Sundberg, Advanced organic chemistry, Part A - 5. Graham Soloman, Organic chemistry, John Wiley and sons 5th edition - 6. S.M. Mukerjee and S.P. Singh, Reaction mechanism in organic chemistry - 7. E.S. Gould, Mechanism and Structure in organic chemistry, 1960, Henry-Holtoo, Inc. - 8. Ernest L. Eliel, Stereochemistry of carbon comounds, 1977, Tata McGraw Hill, New Delhi - 9. D. Nasipuri, Stereochemistry of organic compounds, Wiley eastern limited, New Delhi - 10. P.S. Kalsi, Stereochemistry (1990) 3rdEdn. New age International - 11. I.L. Final, Organic chemistry, Vol.2,5thEdn. ELBS - 12. R.M. Acheson, An introduction to heterocyclic compounds, John Wiley Editon - 13. O.P. Agarwal, Chemistry of organic natural products, 15thEdn. Goel publishing house | Module
No. | Topic | No. of
Lectures | | Teachin
g Aids | |---------------|---|--------------------|--------------------|---------------------------------| | | UNIT -1 BONDING INOI STRUCTURE ANDREACTIVITY | | OMPOUNDS | , | | 11 | Delocalised bonding , conjugation, cross conjugation, resonance, steric inhibition to resonance | 2 | Chalk
&
Talk | Black
Board | | 12 | hyperconjugation, tautomerism, concept of aromaticity, anti aromaticity, nonaromaticity and homoaromaticity, Huckel's rule | 24 | Chalk
&
Talk | LCD | | 1. | alteranate and nonalternate
hydrocarbons, aromaticity
in nonbenzenoid
compounds | 2 | Lecture | PPT &
Whit
e
boar
d | | 14 | fulvenes, azulenes and tropolones. | 2 | Lecture | Smar
t
Boar
d | | 15 | Electronic effects, hydrogen
bonding and steric effects.
Factors influencing
the dissociation
constant of acids and bases,
concept of HSAB | 3 | Lecture | Black
Board | | 16 | Quantitative correlations of structure and reactivity | 2 | Discussio
n | LCD | | 17 | Hammett equation and linear free energy relationship | 3 | Lecture | Smar
t
Boar
d | | 18 | Application and limitations.
Substituent and reaction
constants, Taft equation. | 2 | Discussio
n | Black
Board | | UNIT -2 | INTRODUCTION TORE | ACTIONMI | ECHANISM | | | 21 | Types of mechanisms, types of reactions, activation energy, transition state, intermediates | 2 | Lecture | Green
Board | |-----|---|----------|--------------------|------------------------| | 2.2 | energy profile diagram for
endergonic and exergonic
reactions | 2 | Chalk
&
Talk | Gree
n
Boar
d | | 23 | Reaction intermediate s- carbocations, carbanions | 2 | Lecture | Smar
t
Roo
m | | 2.4 | free radicals, carbenes,
benzyne and nitrenes-their
generation, stability and
structure | 2 | Chalk
&
Talk | Black
Board | | 25 | Methods of determining reaction mechanism | 2 | Discussio
n | LCD | | 2.6 | Kinetic and thermodynamic control of chemical reactions | 3 | Lecture | Black
Board | | 27 | kinetic and non kinetic
methods | 2 | Lecture | Black
Board | | 2.8 | Principle of microscopic reversibility, Hammond's postulate | 3 | Chalk
&
Talk | Black
Board | | | UNIT -3STEREOCH | HEMISTRY | | | | 31 | Concept of chirality, recognition of symmetry elements and chiral structure. | 2 | Chalk
&
Talk | Gree
n
Boar
d | | 32 | Molecules with more than one chiral center, threo and erythro nomenclature, Specification of (E,Z and R,S) configuration for compounds with chiral center, axis and | | Discussio
n | LCD | | | planes by CIP notation | | | | |-----|--|----------|--------------------|------------------------| | 33 | Interconversion of sawhorse, Newmann and Fischer formulae. | 2 | Chalk
&
Talk | Black
Board | | 3.4 | The concept of prochirality, topicity, prostereoisomerism. Equivalent, enantiotopic and diastereotopic ligands and faces of molecules. | 2 | Discussio
n | LCD | | 35 | Stereospecific an d stereoselective reactions | 3 | Lecture | Black
Board | | 3.6 | optical purity,
Atropisomerism-
stereochemistry of allenes,
spiranes | 3 | Lecture | Black
Board | | 37 | biphenyls, ansa compounds
and paracyclophanes | 2 | Chalk
&
Talk | Black
Board | | 3.8 | Assymetric synthesis,
Crams rule,
Prelogsrule | 2 | Chalk
&
Talk | Gree
n
Boar
d | | UI | NIT -4NUCLEOPHILIC AND ELECT | ROPHILIC | CSUBSTITU | TION | | 41 | $S_{N}1$, $S_{N}2$ and $S_{N}i$ mechanism and stereochemistry. Factors affecting the reactivity-effect of substrate structur e, nucleophile, (nucleophilicity and basicity) | 2 | Chalk
&
Talk | Black
Board | | 4.2 | Nature of the leaving group and solvent. | 2 | Discussio
n | LCD | | 4.3 | NGP-involving C=C bond, halogen, carboxylate group, phenyl group, nitrogen and sulphur. Nucleophili c substitution at an allylic carbon, trigonal carbon and vinylic carbon. | 3 | Chalk
&
Talk | Black
Board | |---------|---|---------|--------------------|----------------| | 4.4 | Ambident nucleophile and ambident substrate. Aromatic nucleophilicsubstitution-SNAr, SN1 and benzyne mechanism. | 2 | Discussio
n | LCD | | 45 | Arenium ion mechanism, orientation and reactivity in monosubstituted benzene, | 3 | Lecture | Black
Board | | 4.6 | Orientation in benzene rings with more than one substituents, | 2 | Lecture | Black
Board | | 4.
7 | orientation on other ring systems | 2 | Chalk
&
Talk | Black
Board | | 4.8 | Naphthalene, furan, pyrrole,
thiophene, quinoline and
Isoquinoline | 2 | Chalk
&
Talk | Black
Board | | | UNIT -5NATURALPRODU | CTSCHEM | IISTRY | | | 51 | Preparation and reactions of pyrazole, oxazole, thiazole | 2 | Chalk
&
Talk | Black
Board | | 52 | Preparation and reactions of coumarine, flavones | 2 | Lecture | Black
Board | | 53 | Preparation and reactions of anthocyanins-quercetin | 2 | Chalk
&
Talk | Black
Board | | 54 | Preparation and reactions of caffeine | 3 | Chalk
&
Talk | Black
Board | | 55 | Preparation and reactions of theobromine | 3 | Chalk
&
Talk | Black
Board | |-----|--|---|--------------------|----------------| | 56 | Methods of determining the size of sugar rings | 2 | Discussio
n | LCD | | 57 | Structural elucidation of lactose | 2 | Discussio
n | LCD | | 5.8 | Structural elucidation of cellobiose | 2 | Lecture | Black
Board | ## COURSE CONTENTS & LECTURE SCHEDULE: | | C1 | C2 | СЗ | C4 | Total
Scholasti
c Marks | Non
Scholasti
c Marks
C5 | CIA
Total | % of | |-----------------------|-------------------------------|-------------------------------|-------|----------|-------------------------------|-----------------------------------|--------------|-----------------| | Levels | Session - wise Average 5 Mks. | Better of W1, W2 5+5=1 0 Mks. | M1+M2 | TES
T | 35
Mks. | 5
Mks. | 40Mks. | Assess
m ent | | K1 | 5 | - | - | 2 ½ | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | КЗ | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5 % | | Non
Scholasti
c | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - √ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are: **K1-** Remember, **K2-**Understand, **K3-**Apply, **K4-**Analyse #### EVALUATION PATTERN | SCHOLASTIC | | | NON -
SCHOLASTIC | | MARKS | | | |------------|----|----|---------------------|----|-------|-----|-------| | C
1 | C2 | СЗ | C4 | C5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |---------|--|---|-------------------| | co
1 | To interpret the concept of aromaticity and the main properties of aromatic compounds | K2, K3,K4
& K5 | PSO1&
PSO2 | | CO 2 | To explore reactivity patterns of conjugated, aromatic molecules and to evaluate the kinetics and thermodynamics controlledreactions | K2, K3,K4
& K5 | PSO3 | | CO 3 | To define the fundamentals of chirality, prochirality, symmetry elements and applications of atropisomers | K2, K3,K4
& K5 | PSO5 | | CO 4 | To comprehend of nucleophiles, electrophiles, electronegativity, and resonance | K2, K3,K4
& K5 | PSO2 | | CO 5 | To sketch the preparation and properties of heterocycliccompounds | K2, K3,K4
& K5 | PSO3 | ## Mapping of COs with PSOs | CO
/
PSO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | |----------------
------|------|------|------|------|------|------|------|------| | CO1 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | | соз | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 1 | |-----|---|---|---|---|---|---|---|---|---| | CO4 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | 1 | ## Mapping of COs with POs | CO/ PSO | PO1 | PO2 | PO3 | PO4 | |---------|-----|-----|-----|-----| | CO1 | 3 | 2 | 1 | 1 | | CO2 | 2 | 3 | 1 | 1 | | соз | 3 | 2 | 1 | 1 | | CO4 | 2 | 3 | 1 | 1 | | CO5 | 3 | 2 | 1 | 1 | □ Strongly Correlated – 3 Moderately Correlated – 2 Note: ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** - 1. Dr.M.Priyadharsani - 2. Dr. V.Aruldeepa Forwarded By **HOD'S Signature** B-Tedora. ## SEMESTER -I For those who joined in 2019 onwards | PROGRAM | COURSE | COURSE TITLE | CATEG | HRS/WE | CREDIT | |---------|---------|---|---------------|--------|--------| | ME CODE | CODE | | ORY | EK | S | | PSCH | 19PG1C3 | Physical chemistry- I (Applied electro chemistry &statistical thermodynamics) | MAJOR
CORE | 6 | 4 | **Objective**: This course gives a detailed study of electrochemistry, chemical thermodynamics and statistical thermodynamics #### Course outcome: After successful completion of the course, students will be able CO1: To gain knowledge Kohlrausch's law and electrolytic conductance CO2: To do calculation of conductance& Possess thorough understanding of Debye-Huckel equation CO3: To apply the concept of electrochemistry & Gibbs phase rule CO4: To categorize and compare various partition functions - translational, rotational, vibrational and electronic partition functions CO5: To distinguish various Fermi-Dirac and Bose-Einstein statistics and Maxwell-Boltzmann statistics based on the nature of the particles | UnitI:Electrochemistry–I | 18Hrs | |--|-------| | UnitII:Electrochemistry–II | 18Hrs | | UnitII:ElectrochemistryandThermodynamics | 18Hrs | | UnitIV:ChemicalThermodynamics | 18Hrs | | UnitV:StatisticalThermodynamics | 18Hrs | #### I. Electrochemistry-I 18Hrs. $Introduction to electrolysis, Faraday's laws-\\specific, equivalent and Molar conductance and their variation on dilution, Kohlrausch's lawan dits applications, Applications of conductance measurements.$ The theory of electrolytic conductance – variation of ionic speeds, The degree of dissociation, Interionic attractions, ion-ionandion-solvent interactions, the electrical potential in the vicinity of an ion, Debye-Huckel equation, Limiting and extended forms of the Debye-Huckel equation, Onsager equation and its validity-ionassociation. Electrochemical cells—Types of electrochemical series and its applications. #### II. Electrochemistry-II 18Hrs. Thermodynamics of Reversible cells and reversible electrodes, EMF and equilibrium constant, Nernst equation. EMF of concentration cells with and without transference, Liquidjunction potential, applications of EMF measurements and Fuelcells. Polarisation–Electrolytic polarization, Dissolution and Deposition potentials, determination of anode and cathode potential, Evidence for existence of concentration polarization, polarographic cell Assembly, Ilkovic equation, Fick's law of diffusion, Half-wave potential, **Applications** of polarography. Kineticsofelectrodereactions-Butler-Volmerequation, Tafelequations, Thediffusion Over potential. Interfacial (double layer) phenomena - Types of interface, Electrokinetic phenomena-Electro-osmosis, Electro-phoresis, ### III. Electrochemistry and Thermodynamics 18Hrs Amperometric titrations, consecutive electrode processes, Decomposition voltages, Over voltage - Influence of pH and temperature on over voltage, Oxygen over voltage, Applications of over voltage - Corrosion, corrosion inhibition - Galvanising and of inhibitors. electrode position metals in corrosion aqueous solution. Thebehaviourofcolloidalsystems-colloidalelectrolytes, polyelectrolytes, Membrane equilibria-Dialysis, Ion exchangeresins. Electrocatalysis and Electrosynthesis. Biological applications of electrochemis try. Gibbs phase rule andits application to three componentsystems. Microscopic reversibility and Onsager's reciprocity relation, coupled reactions. Translational, rotational, vibrational and electronic partition functions, partitionfunctionandequilibriumconstant.BoseEinsteincondensation,degeneracyand, application toliquidhelium, paramagnetism. ## IV. ChemicalThermodynamics: 18**Hrs.** A general review of enthalpy, entropy and Free energy concepts, Genesis of third lawand its limitations – Thermodynamics of systems of variable compositions – partial molarquantities and their determination – chemical potential – Gibbs-Duhem equation – Duhem –Margules equation – Fugacity and its determinations – choice of Std. state – Activity andactivity coefficients – determination – Electrolytes and non-electrolytes—Introduction tonon-equilibrium thermodynamics – transformation of the generalized fluxes and forces, non-equilibrium – Stationary states, phenomenological equations, phenomena— diffusion, electric conduction, Irreversible thermodynamics for biological systems #### V. StatisticalThermodynamics 18**Hrs.** Concept of distribution, Thermodynamic probability and most probable distribution. Microstate and Macrostate, Ensemble averaging, Postulates of ensemble averaging, canonical, Grand canonical and microcanonical ensembles, corresponding distribution laws. Maxwell-Boltzmann statistics – partition functions – thermodynamic properties from partition function Quantum statistics – Fermi-Dirac and Bose-Einstein statistics – photon gas, Electrongas degeneracy and electron gas (Fermi energy level). Heat capacities of diatomic gases. Einstein & Debye's theory of heat capacity of solids-, population inversion-negative Kelvin temperature #### ReferencebooksforElectrochemistry: - 1. SamuelGlasstone,IntroductiontoElectrochemistry, - 2. D.R.Crow, Principles& Applications of Electrochemistry, 3rdEdn, Chapman andHall. B.Viswanathan,R.Venkataraman,Dr.K.Rengarajan,Dr.S.Sundaram,Dr.P. S.Raghavan, Electrochemistry Principles and applications, 1stEdn, S. ViswanathanPrintersLtd., #### ReferencebooksforThermodynamics: - 1. J.RajaramandJ.C.Kuriacose, ThermodynamicsForStudentsofChemistry, 2ndE dn., S.L.N.ChandandCo., Jalandhar, 1986. - 2. I.M.KlotzandR.M.Rosenberg, Chemicalthermodynamics, 6thEdn., W.A.Benja minPublishers, California, 1972. - 3. M.C.Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. - 4. D.A.McQurrieandJ.D.Simon, *Physical Chemistry- AMolecular Approach*, Viva Books Pvt. Ltd., New Delhi, 1999. - 5. R.P. Rastogi and R.R. Misra, *Classical Thermodynamics*, Vikas Publishing, Pvt. Ltd.,New Delhi,1990. - 6. F.W.Sears&G.L.Salinger, Thermodynamics, Kinetictheory&StatisticalThermodynamics, NewDelhi, NarosaPublishing House, 3rdEdn., 1989. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic Electrochemistry – I | | | Teaching
Aids | |---------------|---|---|--------------|------------------| | 1.1 | Introduction to electrolysis, Faraday's laws – specific, equivalent and Molar conductance and their variation on dilution | 1 | Chalk & Talk | | | 1.2 | Kohlrausch's law and its
applications | 2 | Lecture | LCD | | 1.3 | Applications of conductance measurements. | 2 | Lecture | PPT | |----------------|---|---|---|---| | 1.4 | The theory of electrolytic
conductance – variation of ionic
speeds | 1 | Chalk & Talk | Black
Board | | 1.5 | The degree of dissociation, Inter ionic attractions — ion-ion and ion-solvent interaction | 2 | Chalk & Talk | Black
Board | | 1.6 | The electrical potential in the vicinity of an ion, Debye-Huckel equation, Limiting and extended forms of the Debye-Huckel equation, Onsager equation and its validity | 4 | Chalk & Talk | Black
Board | | 1.7 | Electrochemical cells – Types of electrodes, Electrochemical series and its applications. | 3 | Chalk & Talk | Black
Board | | | | | | | | UNIT -2 | Electrochemistry – II | | 18 Hrs | | | UNIT -2
2.1 | Electrochemistry – II Thermodynamics of Reversible cells and reversible electrodes | | Chalk & Talk | Black
Board | | | Thermodynamics of Reversible cells | 1 | Chalk & Talk
Chalk & Talk | Board | | 2.1 | Thermodynamics of Reversible cells and reversible electrodes EMF and equilibrium constant, Nernst equation. EMF of concentration cells with and without transference, Liquid junction potential | 2 | Chalk & Talk
Chalk & Talk
Chalk & Talk | Board
Black
Board | | 2.1 | Thermodynamics of Reversible cells and reversible electrodes EMF and equilibrium constant, Nernst equation. EMF of concentration cells with and without transference, Liquid | 2 | Chalk & Talk Chalk & Talk Chalk & Talk Chalk & Talk | Board
Black
Board
Black
Board | | 2.6 | Kinetics of electrode reactions –
Butler-Volmer equation, Tafel
equations, The diffusion Over
potential | 3 | Chalk & Talk | Black
Board | |---------|---|----------|--------------|------------------------| | 2.7 | Electro kinetic phenomena- Electro – osmosis, Electro- phoresis, 2 | | Chalk & Talk | Black
Board | | UNIT -3 | Electrochemistry and Therm | odynamic | s 18 Hrs | 6 | | 3.1 | Amperometric titrations,
consecutive electrode processes,
Decomposition voltages | 2 | Chalk & Talk |
PPT&Black
Board | | 3.2 | Over voltage — Influence of pH and
temperature on over voltage, Oxygen
over voltage, Applications of over
voltag | 2 | Chalk & Talk | PPT
&Black
Board | | 3.3 | Corrosion, corrosion inhibition – Galvanising and corrosion inhibitors, electro deposition of metals in aqueous solution | 2 | Chalk & Talk | PPT
&Black
Board | | 3.4 | The behaviour of colloidal systems – colloidal electrolytes, polyelectrolytes, Membrane equilibria – Dialysis | 2 | Chalk & Talk | PPT
&Black
Board | | 3.5 | Ion – exchange resins.
Electrocatalysis and
Electrosynthesis | 2 | Chalk & Talk | PPT
&Black
Board | | 3.6 | Biological applications of electrochemistry | 1 | Chalk & Talk | PPT&Black
Board | | 3.7 | Gibbs phase rule and its application to three component systems, Microscopic reversibility and Onsager's reciprocity relation., coupled reactions | 2 | Chalk & Talk | PPT&Black
Board | | 3.8 | Translational, rotational, vibrational and electronic partition functions, partition function and equilibrium constant | 1 | Chalk & Talk | Black
Board | |---------|---|-------|--------------|----------------| | 3.9 | Bose Einstein condensation,
degeneracy and,applicatiion to
liquid helium, paramagnetism | 1 | Chalk & Talk | Black
Board | | UNIT -4 | Chemical Thermodynamics | 18 Hr | S | | | 4.1 | A general review of enthalpy,
entropy and Free energy concepts,
Genesis of third law and its
limitations | | Chalk & Talk | Black
Board | | 4.2 | Thermodynamics of systems of variable compositions – partial | | Chalk & Talk | Black
Board | | | molar quantities and their
determination – chemical potential | | | | | 4.3 | Gibbs-Duhem equation – Duhem –
Margules equation – Fugacity and
its determinations – choice of Std.
state | | Chalk & Talk | Black
Board | | 4.4 | Activity and activity coefficients – determination | | Chalk & Talk | Black
Board | | 4.5 | Electrolytes and non-electrolytes—
Introduction to non-equilibrium
thermodynamics | | Chalk & Talk | Black
Board | | 4.6 | transformation of the generalized
fluxes and forces, non-equilibrium
– Stationary states,
phenomenological equations | | Chalk & Talk | Black
Board | | 4.7 | Electrokinetic phenomena – diffusion, electric conduction, Irreversible thermodynamics for biological systems | Chalk & Talk | Black
Board | |--------|---|--------------|----------------| | UNIT-5 | Statistical Thermodynamics 18 | 8 Hrs | | | 5.1 | Concept of distribution, Thermodynamic probability and most probable distribution. | Chalk & Talk | Black
Board | | 5.2 | Microstate and Macrostate, | Chalk & Talk | Black
Board | | 5.3 | Ensemble averaging, Postulates of ensemble averaging, canonical,. | Chalk & Talk | Black
Board | | 5.4 | Grand canonical and microcanonical ensembles, corresponding distribution laws | Chalk & Talk | Black
Board | | 5.5 | Maxwell-Boltzmann statistics – partition functions – thermodynamic properties from partition function | Chalk & Talk | Black
Board | | 5.6 | Quantum statistics – Fermi-Dirac
and Bose-Einstein statistics –
photon gas | Chalk & Talk | Black
Board | | 5.7 | Electron gasdegeneracy and electron gas (Fermi energy level). Heat capacities of diatomic gases | Chalk & Talk | Black
Board | | 5.8 | Einstein & Debye's theory of heat
capacity of solids-
,populationinversion-negative
Kelvin temperature | Chalk & Talk | Black
Board | | | C1 | C2 | C3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks C5 | CIA
Total | % of
Assess | |--------|------------------|--------|------------------|-------------------|------------------------------|-------------------------------|--------------|----------------| | Levels | Better of W1, W2 | M1+M2 | Mid-
Sem.Test | Once in a
Sem. | | | | ment
- | | ı | 5 | 5+5=10 | 15 | 5 | | | 40 | | | K1 | - | - | - | - | - | | - | - | | K2 | - | 2 | 3 | - | 5 | | 5 | 12.5 % | | К3 | 5 | 3 | 4 | - | 12 | | 12 | 30 % | | K4 | - | 5 | 4 | - | 9 | | 9 | 22.5% | | K5 | - | - | 4 | 5 | 9 | | 9 | 22.5 % | | Non- | | | | | | | | | | Scho. | | | | | | | 5 | 12.5 % | | Total | 5 | 10 | 15 | 5 | 35 | 5 | 40 | 100 % | | | | | | | | | mks. | | | CIA | | |----------------|----| | Scholastic | 35 | | Non Scholastic | 5 | | | 40 | - \checkmark All the course outcomes are to be assessed in the various CIA components. - \checkmark The levels of CIA Assessment based on Revised Bloom's Taxonomy for IPG are: **K2-**Understand, K3-Apply, K4-Analyse, K5 - Evaluate # **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|----|----|---------------------|-------|-----|-----|-------| | C1 | C2 | С3 | C4 | C5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 – Best of Two Weekly Tests C2 – Average of Two Monthly Tests C3 - Mid Sem Test C4 – Seminar (Once in a Sem.) **C5** – Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | (| PSOs
ADDRESSED | |----------|--|-------------------|-------------------| | | To gain knowledge Kohlrausch's law
and electrolytic conductance | K2, K3, K4&
K5 | PSO1& PSO2 | | CO_{2} | Calculation of conductance & Possess
thorough understanding of | K2, K3, K4&
K5 | PSO3 | | NO. | COURSE OUTCOMES | ` | PSOs
ADDRESSED | |------|--|-------------------|-------------------| | | Debye-Huckel equation | | | | CO 3 | | K2, K3, K4&
K5 | PSO ₅ | | CO 4 | | K2, K3, K4&
K5 | PSO5 | | CO 5 | Distinguish various Fermi-Dirac and
Bose-Einstein statistics and Maxwell-
Boltzmann statistics based on the
nature of the particles | K2, K3, K4&
K5 | PSO4 | # **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO 7 | PSO
8 | PSO
9 | |-----------------|----------|---|----------|----------|----------|----------|--------------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₂ | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO ₄ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO1 | 3 | 2 | 2 | 2 | | CO2 | 2 | 3 | 2 | 1 | | CO3 | 2 | 2 | 3 | 2 | | CO4 | 3 | 2 | 2 | 2 | | CO ₅ | 3 | 2 | 2 | 2 | Note: - ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** - 1. Dr. A. Rajeswari - 2. Mrs. RM. Nagalakshmi Forwarded By B-Tedora. **HOD'S Signature** #### **SEMESTER-I** #### (For those who joined in 2019 onwards) | PROGRAM | COURSE | COURSE | CATEGO | HRS/WEE | CREDIT | |---------|---------|--------------------------------------|--------|---------|--------| | ME CODE | CODE | TITLE | RY | K | S | | PSCH | 19PG1C4 | INORGANIC
QUALITATIVE
ANALYSIS | LAB | 4 | 2 | #### **COURSE DESCRIPTION:** This paper gives a hands on experience of qualitatively analysing the inorganic salt mixtures containing common and rare earth metal cations by semimicro qualitative analysis #### **COURSE OBJECTIVE:** This paper deals with group separation and group analysis of the given inorganic mixtures. #### **COURSE OUTCOME** After successful completion of the course, the students will be able to - **CO 1**-Describe the principle and procedure of semimicro qualitative analysis - **CO 2**-identify the groups to which the given cations belong to - **CO 3**--distinguish between the familiar and less familiar cations. - **CO 4**-select the confirmatory tests for specific cations - **CO 5**-Apply the theory behind the practicals to write chemical equation #### **QUALITATIVE ANALYSIS** Analysis of inorganic mixtures containing two familiar and two less familiarcations. #### **FAMILIAR (COMMON) CATIONS:** **Group I**: Pb and Hg; Group II: Hg, Cu, Cd, Bi, Sb, As, and Sn; **Group III**: Al, Fe, and Cr; Group IV: Mn,;Zn, Co, and Ni **Group V**: Ca, Sr, and Ba; Group VI: Mg, K, and NH4 + .LESS #### **FAMILIAR (RARECATIONS):** **Group I**: W and Tl; **Group IA**: Se and Te; Group II:Mo; **Group III**: Be, Tl, Ce, Ti, Th, Zr, V, and U; Group VI: Li This analysis involves two steps #### 1. Group separation . Classification of cations into groups by using group reagents ## 2. Group Analysis Confirmatory test for cations #### **TEXT BOOK** V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rd ed., The National Publishing Company, Chennai, 1974. #### REFERENCEBOOK Vogel's Text book of Inorganic Qualitative Analysis, 4th Ed, ELBS, London, 1974. # COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | PSOs ADDRESSED | |------|--|--------------------------------| | CO 1 | Describe the principle and procedure of semimicro qualitative analysis | PSO1, PSO2, PSO3, | | | | PSO6&PSO7 | | CO 2 | Identify the groups to which the given cations belong to | PSO1, PSO2, PSO3,
PSO6&PSO7 | | СО3 | Distinguish between the familiar and less familiar cations. | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 4 | Select the confirmatory tests for specific cations | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 5 | Apply the theory behind the practicals to write chemical equations | PSO1, PSO2, PSO3,
PSO6&PSO7 | # **Mapping of COs with PSOs** | CO/
PSO | PSO1 | PSO2 | PSO ₃ | PSO4 | PSO ₅ | PSO6 | PSO ₇ | PSO8 | PSO9 |
-----------------|------|------|------------------|------|------------------|------|------------------|------|------| | CO ₁ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₂ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | #### **Mapping of COs with POs** | PSO CO/ | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 3 | 2 | 1 | | CO ₂ | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 2 | 1 | **Note**: ♦ Strongly Correlated – **3** ◆ Moderately Correlated – 2 ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Mrs. R. M. Nagalakshmi 2. Dr. Sr. J. Arul Mary **Forwarded By** **HOD'S Signature** B-Tedora. SEMESTER -I (For those who joined in 2017 onwards) | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEG
ORY | HRS/WE
EK | CREDIT
S | |-----------------------|----------------|------------------------------------|--------------|--------------|-------------| | PSCH | 19PG1C5 | ORGANIC
QUALITATIVE
ANALYSIS | LAB | 4 Hrs. | 2 | **Course Descriptive:** This course gives a hands on experience of qualitatively analyzing organic compounds and to synthesis simple organic compounds. **CourseObjective:** To develop the skills of students to separate binary organic mixtures into individual compounds, identifying functional groups, confirming it by preparing suitable derivatives. #### **Course Outcomes:** - To be skilled in the separation of binary organicmixtures - To gain knowledge on the skills of doing micro levelanalysis - . To know the methods of qualitative analysis of organiccompounds - To learn about the preparation of suitable derivative of the organic functional groups - To prepare organic compounds. #### QualitativeAnalysisofanorganicbinarymixture | Pilotseparation | | | | | |---|----|-------------|-------|-------| | ☐ Bulkseparation
Analysisoforganiccompoundsand
reagents | of | derivatives | using | green | (Instead of Bromo derivative, Benzoyl derivative is introduced). (Instead of PCl5, Acid derivative is prepared for monoamide using NaOH and HCl) The functional groups are combined in the following combinations. - Acidic+ Phenolic compounds - Basic+Phenoliccompounds - Acidic+Neutralcompounds - Basic+Neutralcompounds #### The possible functional groups are Carboxylic acids Phenols, Amines, Amides, Nitrocompounds, Carbohydrates, Ester & Carbonylcompounds ## I. Singlestep Organic preparations: #### Preparationof p-Bromo acetanilide fromAcetanilide- Using Green reagent-CAN and KBr (Hazardous bromination is removed and usage of green reagent is introduced) 2-Naphthylbenzoate from 2-Napthol Dibenzalacetone fromBenzaldehyde- can be used for starting material for Research work 1. AcetylsalicylicacidfromSalicylicacid. #### Reference books: - 1. Ganapragasam& Ramamurthy G, Organic Chemistry LabManual, - 2 nd Ed., S. Vishwanathan Printers and Publishers - (P)Ltd.,Chennai,2007. - 2. Furniss BS, Hannaford AJ, SmithP WG and Tatchell AR, Vogel's Textbook of Practical Organic Chemistry, 5th Extra Control of the - d., Pearson Publication. - 3. Vengataswaran Vetal., Basic Principle of Practical Chemistry, Sultan Chandandsons, New Delhi, 1997. # COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | PSOs
ADDRESSED | |-----------------|--|-------------------| | CO 1 | To be skilled in the separation of binary organic mixtures | PSO1& PSO2 | | CO 2 | To gain knowledge on the skills of doing micro level analysis | PSO ₃ | | CO 3 | To know the methods of qualitative analysis of organic compounds | PSO ₅ | | CO 4 | To learn about the preparation of suitable derivative of the organic functional groups | PSO2 | | CO ₅ | To prepare organic compounds. | PSO3 | # **Mapping of COs with PSOs** | CO/
PSO | PSO ₁ | PSO ₂ | PSO ₃ | PSO ₄ | PSO ₅ | PSO6 | PSO ₇ | PSO8 | PSO9 | |-----------------|------------------|------------------|------------------|------------------|------------------|------|------------------|------|------| | CO ₁ | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | CO ₂ | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | | CO ₃ | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 1 | | CO ₄ | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | | CO ₅ | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | 1 | # Mapping of C0s with POs | CO/ PSO | PO1 | PO2 | РО3 | PO4 | |-----------------|-----|-----|-----|-----| | CO ₁ | 3 | 2 | 1 | 1 | | CO ₂ | 2 | 3 | 1 | 1 | | CO ₃ | 3 | 2 | 1 | 1 | | CO ₄ | 2 | 3 | 1 | 1 | |-----------------|---|---|---|---| | CO ₅ | 3 | 2 | 1 | 1 | Note: - **♦ Strongly Correlated 3 ♦ Moderately Correlated** ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** - 1. Dr.M.Priyadharsani - 2. Dr. V.Aruldeepa Forwarded By **HOD'S Signature** B-Tedora. #### SEMESTER - II #### For those who joined from 2021 onwards | PROGRAM | COURSE | COURSE TITLE | CATEG | HRS/WE | CREDI | |---------|---------|---|-------|--------|-------| | ME CODE | CODE | | ORY | EK | TS | | PSCH | 21C1EDC | ANALYSIS OF SOIL,
WATER, FOOD,
COSMETICS AND
OIL | EDC | 3 | 3 | #### **COURSE DESCRIPTION** This paper focuses on all the important aspects of theory about soil, water, food chemistry, cosmetics and oil. #### **COURSE OUTCOME:** After completion of the course the students should be able to: - Acquire the complete knowledge of soil and its texture - Develop idea about water and its treatment - Idetify different types of food colour, aditives and food adulterants - Learn the ingredients required for the preparation of various types of shampoos, skin powder, nail polish. - Understand the need of detoxification of oil and various adulterants present in oil. #### **COURSE OBJECTIVES** | To understand the concepts of soil texture, water analysis. | |---| | To acquire the basic knowledge about food colour, food | | additives and food and adulterants. | | To learn sources of oil, analysis of oil and adulterant in oil. | UNITS #### UNIT -I SOIL (9 HRS.) Composition of soil: Organic and Inorganic constituents. Soil acidity: buffering capacity of soils. Liming of soil. Absorption of cations and anions: availability of soil nutrients to plants. #### UNIT -II WATER (9 HRS.) Importance of water.Naturalwater.Sources of water. Drinking water – making water fit to drink – chlorination. Water pollution-Chemicals causing water contamination – contamination by fertilizers, soaps and detergents and their effect. #### UNIT-III FOOD CHEMISTRY (9HRS.) Food- composition of food -Color- Natural colouring matters – chlorophylls – carotenoids -Synthetic colours – permitted colours-banned colours - FPO, FSSAC, Agmark – Flavors - Food additives-Food adulterants and their detection in various food items. #### **UNIT -IV COSMETICS** (9HRS.) Dental preparations-Tooth paste-Ingredients, their characteristic functios- Soap-hard soap and soft soap- Hair care preparations-Shampoo Shampoos – different kinds of shampoos –anti dandruff, anti-lice, herbal and baby shampoos -Hair dye –manufacture of conditioners -skin preparation –skin powder, nail polish, lipsticks. #### UNIT -V OIL (9 HRS.) Natural sources of oils and fats, oils rich in palmitic acid and stearic acid- processing of fats and oils- analysis of oils- technical refining of oils for industrial uses- detoxification- shelf life prediction test-adulterants in oils. #### **REFERENCES:** - G.T. Austin : shreve's Chemical Process Industries, 5th edition, Mc- Graw-Hill, 1984 - Lakshmi, S. Pharmaceutical Chemistry, S. Chand and Sons, New Delhi, 1995. - 3. A.K. De, Environmental Chemistry, New Age International Publishers, 2018. - 4. JayashreeGhosh, Fundamental concepts of Applied chemistry, S.Chand publications, New Delhi (2013). - 5. J.V.Simons, Science and Beauty Business Vol-1, Macmilan Education Ltd, 1989. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | |---------------|------------------------------------|--------------------|----------------------|-------------------|--|--|--|--|--| | | UNIT -1 TITLE - SOIL | | | | | | | | | | 1.1 | Composition of soil | 1 | Chalk &
Talk | Black
Board | | | | | | | 1.2 | Organic and Inorganic constituents | 1 | Chalk &
Talk | Black
Board | | | | | | | 1.3 | Soil acidity | 1 | Chalk &
Talk | Black
Board | | | | | | | 1.4 | buffering capacity of soils | 1 | Chalk &
Talk | PPT & White board | | | | | | | 1.5 | Liming of soil | 1 | Chalk &
Talk | Black
Board | | | | | | | 1.6 | Absorption of cations | 1 | Chalk &
Talk | Black
Board | | | | | | | 1.7 | Absorption of anions: | 2 | Chalk &
Talk | PPT & White board | | | | | | | | CBCS Curriculum for I | PG Chemis | | | | | | | |--------|---|-----------|-------------------|-----------------------|--|--|--|--| | 1.8 | availability of soil nutrients to plants. | 1 | Chalk &
Talk | Black
Board | | | | | | | UNIT - 2 TITLE -WATER | | | | | | | | | 2.1 | Importance of water | 1 | Chalk &
Talk | Black
Board | | | | | | 2.2 | Naturalwater | 1 | Chalk &
Talk | Black
Board | | | | | | 2.3 | Sources of water | 1 | Chalk &
Talk | Black Board | | | | | | 2.4 | Drinking water | 1 | Chalk & Talk | Black Board | | | | | | 2.5 | Making water fit to drink – chlorination | 1 | Chalk & Talk | PPT & White board | | | | | | 2.6 | Water pollution | 1 | Chalk & Talk | Black Board | | | | | | 2.7 | Chemicals causing water contamination – | 1 | Chalk & Talk | Black Board | | | | | | 2.8 | contamination by fertilizers,
soaps and detergents and
their
effect | 2 | Demonstration | Various raw materials | | | | | | UNIT - | 3 TITLE -FOOD CHEMISTRY | | | | | | | | | 3.1 | Food- composition of food | 1 | Chalk &
Talk | Black
Board | | | | | | 3.2 | Food colour | 1 | Chalk &
Talk | Black
Board | | | | | | 3.3 | Natural colouring matters
chlorophylls – carotenoids | 1 | Chalk &
Talk | Black
Board | | | | | | 3.4 | Synthetic colours | 1 | Chalk &
Talk | Black
Board | | | | | | 3.5 | permitted colours | 1 | 1 Chalk &
Talk | | | | | | | 3.6 | banned colours - FPO, FSSAC,
Agmark – Flavors | 1 | Chalk &
Talk | Black
Board | | | | | | 3.7 | Food additives | 1 | Chalk &
Talk | Black
Board | |-----|---|---|-----------------|----------------| | 3.8 | Food adulterants and their detection in various food items. | 2 | Chalk &
Talk | Black
Board | | UNIT - | UNIT -4 TITLE-COSMETICS | | | | | | | |----------|---|---|-----------------|----------------|--|--|--| | 4.1 | Dental preparations-Tooth paste-
Ingredients, their characteristic
functios | | Chalk &
Talk | Black
Board | | | | | 4.2 | Soap-hard soap and soft soap | 1 | Chalk &
Talk | LCD | | | | | 4.3 | Hair care preparations-Shampoo
different kinds of shampoos –anti
dandruff and anti-lice | 2 | Chalk &
Talk | Black
Board | | | | | 4.4 | herbal and baby shampoos | 1 | Chalk &
Talk | Black
Board | | | | | 4.5 | Hair dye –manufacture of conditioners | 1 | Chalk &
Talk | Black
Board | | | | | 4.6 | skin preparation –skin powder | 1 | Chalk &
Talk | Black
Board | | | | | 4.7 | nail polish | 1 | Chalk &
Talk | Black
Board | | | | | 4.8 | lipsticks | 1 | Chalk &
Talk | Black
Board | | | | | UNIT - 5 | 5 TITLE -OILS | | | | | | | | 5.1 | Natural sources of oils and fats | 1 | Chalk &
Talk | Black
Board | | | | | 5.2 | oils rich in palmitic acid and static acid | 1 | Chalk &
Talk | LCD | | | | | 5.3 | processing of fats and oils | 1 | Chalk &
Talk | Black
Board | | | | | 5.4 | analysis of oils | 2 | Chalk &
Talk | Black
Board | |-----|--|---|-----------------|----------------| | 5.5 | technical refining of oils for industrial uses | 1 | Chalk &
Talk | Black
Board | | 5.6 | detoxification | 1 | Chalk &
Talk | Black
Board | | 5.7 | shelf life prediction test | 1 | Chalk &
Talk | Black
Board | | 5.8 | adulterants in oils | 1 | Chalk &
Talk | Black
Board | | | C1 | C2 | C3 | Total
Scholastic
Marks | Non
Scholastic
Marks
C4 | CIA
Total | | |------------|--------|---------|---------------------|------------------------------|----------------------------------|--------------|--------------------| | Levels | Weekly | Monthly | MID-
SEM
TEST | | | | % of
Assessment | | | 5Mks. | 10 Mks. | 20 Mks. | 35 Mks. | 5 Mks. | 40 Mks. | | | K1 | - | 5 Mks. | 5 Mks. | 10 | - | 10 | 25 % | | K2 | - | 5 Mks. | 8 Mks. | 13 | - | 13 | 32.5 % | | К3 | 5 Mks. | - | 7 Mks. | 12 | - | 12 | 30 % | | Non | - | - | - | - | 5 | 5 | 12.5 % | | Scholastic | | | | | | | | | Total | 5 | 10 | 20 | 35 | 5 | 40 | 100 % | | CIA | | | | |----------------|----|--|--| | Scholastic | 35 | | | | Non Scholastic | 5 | | | | | 40 | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K1**-Understand, **K2**-Apply, **K3**-Analyse ✓ The I PG course teachers are requested to start conducting S1, W1, M1, #### **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|----|----|---------------------|----------------|-----|---------|-----| | C1 | C2 | С3 | C4 | C ₅ | CIA | CIA ESE | | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests **C2** – Average of Two Monthly Tests C3 - Mid Sem Test C4 – Best of Two Weekly Tests C₅ – Non - Scholastic # **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----------------|---|--|-------------------| | CO 1 | Analyse the buffering capacity of soil, p H, cation exchange capacity, nutrient availability of soil, fertility status of soil. | K1 | PSO1 | | CO 2 | Analyze the p H of water, hardness of water and acquire knowledge of advanced water purification techniques (and water treatment) | | PSO2 | | СОЗ | Identify different types of food colour,additives and food adulterants | K1 | PSO2 | | CO 4 | Learn the ingredients required for the preparation of the various types of shampoos,skin powder and nail polish | K2 | PSO4 | | CO ₅ | Analyze and Detect the presence of adulderants in oils and to compare the physical and chemical refining of oils | К3 | PSO5 | # **Mapping COs Consistency with PSOs** | CO/PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |--------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 1 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | CO2 | 3 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | | CO3 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | CO4 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | | CO5 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | | CO ₂ | 3 | 2 | 2 | 2 | | CO ₃ | 3 | 3 | 3 | 3 | | CO ₄ | 3 | 2 | 3 | 2 | | CO ₅ | 3 | 3 | 2 | 3 | ♦ WeaklyCorrelated -1 ## **COURSE DESIGNER:** - 1. Mrs. RM. Nagalakshmi - 2. Dr. B.SUGANTHANA **Forwarded By** **HOD'S Signature.** 8-Tedora. # SEMESTER -II For those who joined in 2019 onwards | PROGRAMME
CODE | COURSE
CODE | COURSE
TITLE | CATEGORY | HRS/WEEK | CREDITS | |-------------------|----------------|--|---------------|----------|---------| | PSCH | 19PG2C6 | Inorganic
chemistry-II
(Advanced | MAJOR
CORE | 6 | 4 | | | | Coordination
Chemistry) | | | | **COURSEDESCRIPTION:** It deals with theories, characterisationwithspectralstudies and reaction mechanism of coordination compounds. **COURSE OBJECTIVES:** This course provides the study of different aspects of coordination chemistry such as bonding, reaction mechanism and electronic pectra and other spectral techniques #### COURSE OUTCOME: After the completion of the course the students will be able to • Compare the stabilities of complexes using stability constants and to identify the types of isomers - To describe the theories of co-ordination compounds to understand the colours and magnetic properties and their position in the spectrochemical series - . Investigate the structures of complexes using IR,NMR ,E SR and other spectral techniques - Possess a thorough understanding of electronic spectra of complexes - To arrive at the mechanisms of substitution reactions in six and four coordinated complexes using kinetic studies UNIT -IINTRODUCTION TOCO-ORDINATION CHEMISTRY- I (18HRS.) Co-ordinationnumbers-Isomerism-Geometrical&Optical-ORD,CD-Chelateeffect,stabilityofcomplexes-determinationofstabilityconstant,Jobs method- factors affecting stability constants, V.B.Theory –postulates, formation of complex ions on the basis of VB theory, limitations and Magnetic properties of complexes #### UNIT-II BONDINGINCO-ORDINATION CHEMISTRY (18HRS.) BondinginCo- ordinationcompounds,VBT,CFT,CFSE,CFTtotetrahedral,tetragonalandsquarepl anarcomplexes,factorsaffectingΔ,applications of CFT, spectrochemical series-Nephelauxelic effect, M O theory toOctahedral, Jahn_teller effect-square planer complexes-Pi bonding and MOT,experimentalevidenceforPibonding,orbitalcontributiontomagneticmoments. #### UNIT-III ELECTRONIC SPECTRA (18 HRS.) Electronic spectra, selection rules, Term &Term symbol, term symbols derivation for p2 configuration, calculation of micro states, Orgel diagrams for octahedral and tetrahedral complexes of metal ions with $\rm d^1to$ $\rm d^9systems$, Tanabe Sugano diagram for $\rm d^2, d^6$ and $\rm d^7systems$, Tetragonal distortions fromoctahedral symmetry and charge transfer spectra. # UNIT-IVOTHERSPECTRALTECHNIQUESFORCO-ORDINATIONCOMPOUNDS (18HRS.) Applications of Mossbauer, NQR, NMR, EPR, IR Spectral Techniques to coordinationcomplexes. #### **UNIT -V: REACTION MECHANISMS** (18HRS.) Reaction Kinetics and mechanism, substitution reaction in square planar complexes, Thermodynamic and Kinetic Stability-Kinetics of Octahedralsubstitution, mechanisms of Redox reactions. Outer sphere-inner sphere E.Treactions #### REFERENCES: - 1. James.E.Huheey, *Inorganic* Chemistry, pearson publications, 4thedition, 2008. - 2. F.A.Cotton, G.Wilkinson, C.A. Murillo and M.Bochmann, - . Advanced Inorganic Chemistry; 6thed.; Wiley Interscience: New York, 1988. - 3. K.F.PurcellandJ.C.Kotz, InorganicChemistry; Saunders: Philadelphia, 1976. - 4. D.F.Shriver, P.W.Atkins and C.H. Langford; *Inorganic Chemistry*; 3rd ed., OxfordUniversityPress:London, 2001. - 5. R. S.Drago, Physical MethodsinChemistry; Saunders: Philadelphia, 1977. ### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|--------------------| | UNIT -1 | INTRODUCTION TO CO-ORDI | NATION CI | HEMISTRY (| 18 Hours) | | 1.1 | Co-ordination numbers | 2 | Chalk &
Talk | Black
Boar
d | | 1.2 |
Isomerism-Geometrical
&Optical | 3 | Chalk &
Talk | LCD | | 1.3 | ORD, CD | 1 | Lecture | PPT | | 1.4 | Chelate effect, stability of complexes – determination of stability constant, | 2 | Lecture | PPT | | 1.5 | Factors affecting stability constants | 2 | Lecture | Black
Boar
d | | 1.6 | V.B.Theory –postulates & limitations | 1 | Discussio
n | Black
Boar
d | | 1.7 | Formation of complex ions on the basis of VB theory | 3 | Lecture | Black
Boar
d | | 1.8 | Magnetic properties of complexes. | 1 | Discussio
n | Black
Boar
d | |---------|---|---------|-----------------|--------------------| | UNIT -2 | BONDING IN CO-ORDINATION | CHEMIST | RY (18 Hours |) | | 2.1 | Bonding in Co-ordination compounds | 2 | Lecture | Black
Boar
d | | 2.2 | CFT, CFSE, CFT to
tetrahedral,tetragonal and
square planar complexes | 3 | Chalk &
Talk | Black
Boar
d | | 2.3 | Factors affecting Δ_0 , applications of CFT | 2 | Chalk &
Talk | Black
Boar
d | | 2.4 | spectrochemical series-
Nephelauxelic effect | 2 | Chalk &
Talk | Black
Boar
d | | 2.5 | Jahn_teller effect- M O theory to
Octahedral | 3 | Chalk &
Talk | Black
Boar
d | | 2.6 | Pi bonding and MOT,
experimental evidence for Pi-
bonding, | 2 | Chalk &
Talk | Black
Boar
d | | 2.7 | Orbital contribution to magnetic moments | 1 | Chalk &
Talk | Black
Boar
d | | UNIT -3 | ELECTRONIC SPECTRA (18 Hour | rs) | | | | 3.1 | Electronic spectra, selection rules, Term &Term symbol | 2 | Chalk &
Talk | Black
Boar
d | | 3.2 | Derivation for p ² configuration, calculation of micro states | 3 | Chalk &
Talk | Black
Boar
d | | 3.3 | Orgel diagrams for octahedral and tetrahedral complexes of metal ions with d ¹ to d ⁹ systems | 5 | Chalk &
Talk | Black
Boar
d | | 3.4 | Tanabe Sugano diagram for d ² ,d ⁶ and d ⁷ systems | 3 | Chalk &
Talk | Black
Boar
d | | | | 1 | | | |---------|---|----------|-----------------|--------------------| | 3.5 | Tetragonal distortions from octahedral symmetry | 1 | Chalk &
Talk | Black
Boar
d | | 3.6 | Charge transfer spectra | 1 | Chalk &
Talk | Black
Boar
d | | UNIT -4 | OTHER SPECTRAL TECHNIQUES F | ORCO-ORI | DINATION CO | MPOUNDS | | 4.1 | Principle and applications of Mossbauer to Iron complexes . | 3 | Chalk & | PPT | | | | | Talk | | | 4.2 | Applications of NQR to co-ordination complexes. | 3 | Chalk &
Talk | PPT | | 4.3 | Applications of NMR to co-ordination complexes. | 3 | Chalk &
Talk | PPT | | 4.4 | Applications of EPR to co-ordination complexes. | 3 | Chalk &
Talk | PPT | | 4.5 | Applications of IR to co-ordination complexes. | 3 | Chalk &
Talk | PPT | | UNIT-5 | REACTION MECHANISMS (18 He | ours) | | | | 5.1 | Reaction Kinetics and mechanism | 3 | Chalk &
Talk | Black
Boar
d | | 5.2 | Substitution reactions in square planar complexes | 3 | Chalk &
Talk | Black
Boar
d | | 5.3 | Thermodynamic and Kinetic Stability | 3 | Chalk &
Talk | Black
Boar
d | | 5.4 | Kinetics of Octahedral substitution | 3 | Chalk &
Talk | Black
Boar
d | | 5.5 | Mechanisms of Redox reactions.Outer sphere-inner sphere E.T reactions | 3 | Chalk &
Talk | Black
Boar
d | | | C1 | C2 | СЗ | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |-------------------|---------|---------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Seminar | Better of
W1, W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessme
nt | | | 5 Mks. | 5Mks. | 10 Mks | 15 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K2 | 5 | - | - | - 2 1/2 | | - | - | | | КЗ | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | K4 | - | - | 3 | 5 | 12 | | 12 | 30 % | | К5 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - $\checkmark\,\,$ All the course outcomes are to be assessed in the various CIA components. - \checkmark The levels of CIA Assessment based on Revised Bloom's Taxonomy for IPG are: K2-Understand, K3-Apply, K4-Analyse, K5 - Evaluate # **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | | MARKS | | | |------------|----|----|---------------------|----|------------|----|-------| | C1 | C2 | СЗ | C4 | C5 | CIA ESE To | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Best of Two Weekly Tests C2 – Average of Two Monthly Tests C3 - Mid Sem Test **C4** – Seminar (Once in a Sem.) C5 – Non - Scholastic # **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |---------|--|---|-------------------| | co
1 | Compare the stabilities of complexes using stability constants and to identify the types of isomers | K2, K3, K4
&K5 | PSO1&
PSO2 | | CO 2 | To describe the theories of co-
ordination compounds to
understand the colours and
magnetic properties and their
position in the spectrochemical
series | K2, K3, K4
&K5 | PSO3 | | CO 3 | Investigate the structures of
complexes using IR,NMR ,E SR
and other spectral techniques | K2, K3, K4
&K5 | PSO5 | |------|--|-------------------|------| | CO 4 | Possess a thorough understanding of electronic spectra of complexes | K2, K3, K4
&K5 | PSO3 | | CO 5 | To arrive at the mechanisms of
substitution reactions in six and
four coordinated complexes using
kinetic studies | K2, K3, K4
&K5 | PSO3 | # **Mapping of COs with PSOs** | CO
/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO3 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO4 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO5 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | # Mapping of COs with POs | CO
/
PSO | PO1 | PO2 | РО3 | PO4 | |----------------|-----|-----|-----|-----| | CO1 | 3 | 2 | 2 | 2 | | CO2 | 2 | 3 | 2 | 2 | | соз | 2 | 2 | 3 | 2 | | CO4 | 3 | 2 | 2 | 2 | | CO5 | 3 | 2 | 2 | 2 | Note: ◆ Strongly Correlated - 3 ◆ Moderately Correlated - Weakly Correlated -1 ### **COURSE DESIGNER:** - 1. Dr.B.Medona - 2. Dr.A.Rajeswari **Forwarded By** **HOD'S Signature** B-Tedora. #### . SEMESTER -II # For those who joined in 2019 onwards | PROGRAM | COURSE | COURSE | CATEGO | HRS/WEE | CREDIT | |---------|---------|-------------------------|---------------|---------|--------| | ME CODE | CODE | TITLE | RY | K | S | | PSCH | 19PG2C7 | Organic
chemistry-II | MAJOR
CORE | 6 Hrs. | 4 | **Objective:** This course deals with elimination and addition reactions, conformational analysis and selective organic name reactions and rearrangements. It also provides an elaborate study of organic spectroscopy and their applications in structural elucidation of organic compounds. #### **COURSE OUTCOME:** After completion of the course the students should be able: - CO1- To comprehend the mechanism of elimination and substitution reactions and to apply the stereochemistry in E1, E2, ionic and pyrolytic eliminations. - CO2- To interpret the concept of nucleophilic and free radical addition reactions and metal hydride reduction and to discriminate the reactivity of organometalic reagents. - CO3-. To explore reactivity patterns of substituted cyclohexanes and to employ conformational reactivity in cis and trans decalins and to apply conformations in SN1, SN2, ionic, pyrolytic eliminations and NGP reactions. - CO4- To acquire a complete knowledge of the principles of UV, IR spectroscopy and to examine the various functional groups present in organic molecules using λ max and IR frequency values . - CO5- To differentiate the molecular rearrangements and to solve the simple problems and to recall the various naming reactions and to interpret the products. #### Units | Unit-I- Elimination addition reaction | 18 Hrs | |--|--------| | Unit-II- Addition reaction | 18Hrs | | Unit-III-Conformational analysis | 18 Hrs | | Unit-IV-Organic Spectroscopy -IR, UV | 18 Hrs | | Unit-V- Selective Organic Name reactions | 18Hrs | #### **Unit-I-** Elimination Reactions **18 Hrs** Elimination- E2,E1 and E1CB mechanism. Orientation of the double bond. Hoffmann and Sayetzeff rules. Reactivity-effect of substrate, attacking base, the leaving group and medium. Competition between elimination and substitution. Orientation in pyrolytic elimination-Bredt's rule. #### **Unit-II- Addition Reactions** 18 Hrs Addition to carbon-carbon multiple bonds-Electrophilic addition, Nucleophilic addition, Free radical addition, Addition to conjugated systems. Orientation and reactivity. Hydroboration, addition of bromine to E and Z-2-butene, Hydroxylation- OsO₄, alk.KMnO₄, Woodward method and Prevost reaction. Addition to Carbon-Hetero multiple bonds-Mechanism and reactivity. Addition of alcohols and amines to aldehydes and ketones- mechanism of metal hydride reduction. -Addition of
Grignard reagents, organozinc and organo lithium reagents to carbonyl and unsaturated carbonyl compounds. #### **Unit-III-Conformational Analysis** 18 #### Hrs - a) Introduction-Configuration and conformation-Conformation of molecules-acyclic molecules, ethane and n-butanes. Conformation of cyclohexane, mono and disubstituted cyclohexanes, Cyclohexanones. Fusedbicyclicmolecules, polycyclicmolecules, decalins, perhydrophenanthrenes. - **b)** Conformation and Reactivity: Conformation and reactivity in acyclic systems – Ionic elimination – pyrolytic elimination, NGP by bromine. Conformation and reactivity in cyclohexane system SN1, SN2, saponification, ionic elimination, pyrolytic elimination, NGP – 3^o H and acetoxy group, epoxide ring formation and ring opening, Electrophilic addition, Molecular rearrangements, Curtin Hammett Principle. #### Unit-IV-Organic Spectroscopy UV, IR spectra **18 Hrs** i)UV-Visible Spectroscopy- Theory of electronic spectroscopy, Types of electronic transitions – Chromophore, Auxochrome, Bathochromic shifts, Hypsochromic shift, Hypochromic and hyperchromic shift – Factors affecting λ max – solvent effect, Conjugation and steric hindrance - Fieser woodward rules for calculating λ max in conjugated diene and carbonyl compounds, Applications of UV spectroscopy. ii) IR Spectroscopy- Basic principles – Factors influencing vibrational frequencies – vibrational coupling and Fermi resonance, Electronic effects, Bond angles, field effect, physical state and solvent effect – Scanning of IR spectrum – Fingerprint regions – molecular vibrational frequency-characteristic frequencies of some important functional groups such as >C=O,- CN,-OH,-NH₂,-COOH,-C-H, -C=C-H, -CHO,-C=C-H etc.- Application of IR spectra. #### Unit-V-Selective Organic Name reactions **18 Hrs** Favorski reaction-Stork- enamine reaction, Ene reaction-shapiro reaction-Baeyer Villiger reaction-, Birch reduction, Mannich reaction, Wittig reaction, Stobbe reaction. .Beckmann, Fries, Wagner-Meerwein rearrangement, Wolf rearrangement, Skraup synthesis, Steven's rearrangement, dienone-phenol rearrangement. #### References: 1.Jerry march, Advanced Organic chemistry, Reaction mechanism and structure, Willey, 4th edn, 1992. - 2. Peter Sykes. A, Aguide book to mechanism in organic chemistry, Longmann. - 3.E.S.Gould(1960), Mechanism and structure in organic chemistry, Henry-Holtoo INC. - 4.Ernest.L.Eliel, Stereo chemistry of carbon compounds, 1997.22nd reprint, Tata Mcgraw-Hill, NewDelhi. - 5.D.Nasipuri,Stereochemistry of organic compounds,1994,2nd edn,Wiley eastern limited,NewDelhi. - 6.Silverstein,Bassler and Morrel,Spectrometric identification of organic compounds,4th edn,John Wiley and Sons. - 7.P.S. Kalsi, spectroscopy of organic compounds, 1993, Wiley eastern. - 8. Wiliam Kemp, (1991) organic spectroscopy, Macmilan, 3rd edition. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | | |---------------|--|--------------------|----------------------|-------------------------|--|--|--|--|--|--| | | UNIT -1 ELIMINATION REACTIONS | | | | | | | | | | | 1.1 | Elimination- E2,E1 and E1CB mechanism | 2 | Chalk &
Talk | Black
Board | | | | | | | | 1.2 | Orientation of the double bond | 2 | Chalk &
Talk | LCD | | | | | | | | 1.3 | Hoffmann and Sayetzeff rules | 2 | Lecture | PPT &
White
board | | | | | | | | 1.4 | Reactivity-effect of substrate, attacking base | 2 | Lecture | Smart
Board | | | | | | | | 1.5 | Effect of the leaving group and medium | 3 | Lecture | Black
Board | | | | | | | | 1.6 | Competition between elimination and substitution | 2 | Discussion | | | | | | | | | 1.7 | Orientation in pyrolytic elimination | 3 | Lecture | Smart
Board | | | | | | | | 1.8 | Bredt's rule | 2 | Discussion | Black
Board | | | | | | | | | UNIT -2 ADDITION REAC | CTIONS | | | |-----|--|----------|-----------------|------------------------| | 2.1 | Addition to carbon-carbon multiple bonds-Electrophilic addition | 3 | Chalk &
Talk | Black
Board | | 2.2 | Nucleophilic addition, Free radical addition | 2 | Chalk &
Talk | LCD | | 2.3 | Addition to conjugated systems | 2 | Lecture | PPT &
White
OARD | | 2.4 | Orientation and reactivity | 2 | Lecture | Smart
Board | | 2.5 | Hydroboration, addition of
bromine to E and Z-2-butene,
Hydroxylation- OsO4,
alk.KMnO4, Woodward method
and Prevost reaction | 3 | Lecture | Black
Board | | 2.6 | Addition to Carbon-Hetero
multiple bonds-Mechanism and
reactivity | 2 | Discussion | | | 2.7 | Addition of alcohols and amines
to aldehydes and ketones-
mechanism of metal hydride
reduction | 2 | Lecture | Smart
Board | | 2.8 | Addition of Grignard reagents, organozinc and organo lithium reagents to carbonyl and unsaturated carbonyl compounds | 2 | Discussion | Black
Board | | | UNIT -3 CONFORMATIONAL | ANALYSIS | 5 | | | 3.1 | Introduction-Configuration and conformation-Conformation of molecules-acyclic molecules, ethane and n-butanes | 2 | Chalk &
Talk | Black
Board | | 3.2 | Conformation of cyclohexane,
mono and
disubsitutedcyclohexanes | 3 | Chalk &
Talk | LCD | | 3.3 | Cyclohexanones. Fusedbicyclicmolecules, polycyclicmolecules, decalins, perhydrophenanthrenes | 2 | Lecture | PPT &
White
board | |-----|--|----------|----------------------------|-------------------------| | 3.4 | Conformation and reactivity in acyclic systems – Ionic elimination | 2 | Lecture | Smart
Board | | 3.5 | pyrolytic elimination, NGP by bromine | 2 | Lecture | Black
Board | | 3.6 | Conformation and reactivity in cyclohexane system SN1, SN2 | 2 | Discussion | | | 3.7 | saponification, ionic elimination,
pyrolytic elimination, NGP - 3°
H and acetoxy group | 3 | Lecture | Smart
Board | | 3.8 | epoxide ring formation and ring
opening, Electrophilic addition,
Molecular rearrangements,
Curtin Hammett Principle | 2 | Discussion | Black
Board | | UN | | | | | | 01 | NIT -4 ORGANIC SPECTROSCOPY | UV,IK SP | ECIKA | | | 4.1 | UV-Visible Spectroscopy-Theory of electronic spectroscopy, Types of electronic transitions | 2 | Chalk &
Talk | Black
Board | | | UV-Visible Spectroscopy-Theory of electronic spectroscopy, Types | , | Chalk & | | | 4.1 | UV-Visible Spectroscopy-Theory of electronic spectroscopy, Types of electronic transitions Chromophore, Auxochrome, Bathochromic shifts, Hypsochromic shift, Hypochromic and hyperchromic | 2 | Chalk & Talk Chalk & | Board | | 4.1 | UV-Visible Spectroscopy-Theory of electronic spectroscopy, Types of electronic transitions Chromophore, Auxochrome, Bathochromic shifts, Hypsochromic shift, Hypochromic and hyperchromic shift Factors affecting λ max – solvent effect, Conjugation and steric | 2 | Chalk & Talk Chalk & Talk | LCD PPT & White | | vibrational coupling and Fermi
resonance, Electronic effects,
Bond angles, field effect,
physical state and solvent effect | 2 | Discussion | | |---|--|---|---| | Scanning of IR spectrum –
Fingerprint regions - molecular
vibrational frequency | 2 | Lecture | Smart
Board | | characteristic frequencies of some important functional groups such as >C=O,- CN,-OH,-NH2,-COOH,-C-H, -C=C-H, -CHO,-C=C-H etc Application of IR | 3 | Discussion | Black
Board | | NIT -5SELECTIVE ORGANIC NAI | ME REACT | TIONS | | | Favorski reaction-Stork-
enamine reaction | 2 | Chalk &
Talk | Black
Board | | Ene reaction-shapiro reaction- | 2 | Chalk &
Talk | LCD | | Baeyer Villiger reaction-, Birch reduction | 2 | Lecture | PPT &
White
board | | Mannich reaction, Wittig reaction, | 3 | Lecture | Smart
Board | | Stobbe
reaction, Beckmann,
Fries, Wagner-Meerwein
rearrangement | 3 | Lecture | Black
Board | | | | | | | Wolf rearrangement, Skraup
synthesis | 2 | Discussion | | | | 2 | Discussion Lecture | Smart
Board | | | resonance, Electronic effects, Bond angles, field effect, physical state and solvent effect Scanning of IR spectrum — Fingerprint regions - molecular vibrational frequency characteristic frequencies of some important functional groups such as >C=O,- CN,-OH,-NH2,-COOH,- C-H, -C=C-H, -CHO,-C=C-H etc Application of IR NIT -5SELECTIVE ORGANIC NAI Favorski reaction-Stork- enamine reaction Ene reaction-shapiro reaction- Baeyer Villiger reaction-, Birch reduction Mannich reaction, Wittig reaction, Stobbe reaction, Beckmann, Fries, Wagner-Meerwein | resonance, Electronic effects, Bond angles, field effect, physical state and solvent effect Scanning of IR spectrum — Fingerprint regions - molecular vibrational frequency characteristic frequencies of some important functional groups such as >C=O,- CN,-OH,-NH2,-COOH,-C-H, -C=C-H, -CHO,-C=C-H etc Application of IR NIT -5SELECTIVE ORGANIC NAME REACT Favorski reaction-Stork-enamine reaction Ene reaction-shapiro reaction- Baeyer Villiger reaction-, Birch reduction Mannich reaction, Wittig reaction, Stobbe reaction, Beckmann, Fries, Wagner-Meerwein 3 | resonance, Electronic effects, Bond angles, field effect, physical state and solvent effect Scanning of IR spectrum — Fingerprint regions - molecular vibrational frequency characteristic frequencies of some important functional groups such as >C=O,- CN,-OH,-NH2,-COOH,-C-H, -C=C-H, -CHO,-C=C-H etc Application of IR NIT -5SELECTIVE ORGANIC NAME REACTIONS Favorski reaction-Stork-enamine reaction Ene reaction-shapiro reaction- Baeyer Villiger reaction-, Birch reduction Mannich reaction, Wittig reaction, Stobbe reaction, Beckmann, Fries, Wagner-Meerwein 3 Lecture | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |-------------------|------------------------------|-------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Semina
r | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5 Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K1-** Remember, **K2-**Understand, **K3-**Apply, **K4-** Analyse ✓ The I PG course teachers are requested to start conducting S1, W1, M1, ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|-----------|----|---------------------|----------------|-----|-----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | - C1 Average of Two Session Wise Tests - C2 Average of Two Monthly Tests - C3 Mid Sem Test - C4 Seminar - C5 Non Scholastic # **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|-------------------| | CO 1 | To comprehend the mechanism of elimination and substitution reactions and to apply the stereochemistry in E1, E2, ionic and pyrolytic eliminations. | K2, K3, K4 &
K5 | PSO1 &PSO2 | | CO 2 | To interpret the concept of nucleophilic and free radical addition reactions and metal hydride reduction and to discriminate the reactivity of organometalic reagents. | K2, K3, K4 &
K5 | PSO1 &PSO2 | | соз | To explore reactivity patterns of substituted cyclohexanes and to employ conformational reactivity in cis and trans decalins and to apply conformations in SN1, SN2, ionic, pyrolytic eliminations and NGP reactions. | K2, K3, K4 &
K5 | PSO2& PSo3 | |------|---|--------------------|--------------| | CO 4 | To acquire a complete knowledge of the principles of UV, IR spectroscopy and to examine the various functional groups present in organic molecules using λmax and IR frequency values . | K2, K3, K4 &
K5 | PSO3 &PSo4 | | CO 5 | To differentiate the molecular rearrangements and to solve the simple problems and to recall the various naming reactions and to interpret the products. | K2, K3, K4 &
K5 | PSO1
PSO8 | # **Mapping of COs with PSOs** | CO/
PSO | PSO
1 | PSO 2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |-----------------|----------|-------|----------|----------|----------|----------|----------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₂ | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₃ | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₄ | 2 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | | CO ₅ | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | ## Mapping of C0s with POs | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | | CO ₂ | 3 | 2 | 2 | 2 | | CO ₃ | 3 | 3 | 3 | 3 | | CO ₄ | 3 | 2 | 3 | 2 | | CO ₅ | 3 | 3 | 2 | 3 | #### **COURSE DESIGNER:** - 1. Staff Name Dr.B. Vinosha - 2. Staff Name Dr.V.Aruldeepa Forwarded By **HOD'S Signature** B-Tedora. #### SEMESTER-II #### For those who joined in 2019 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGO
RY | HRS/WE
EK | CREDITS | |-----------------------|----------------|---|---------------|--------------|---------| | PSCH | 19PG2C8 | Physical chemistry-II (Chemical Kinetics and Quantum Mechanics) | MAJOR
CORE | 6 Hrs. | 4 | **Objective:** This paper provides an extensive study of the topics such as Chemical kinetics and Quantum mechanics. #### **Course Outcomes:** After studying this course, students should be able - To Understand the concept of rate constants,ionic strength, Fast reactions, Catalysis, orthogonality and normalization and to solve the problems related to rate constants - To explore and to evaluate the kinetics of complex, consecutive and chain reactions and Kinetics of reactions in solution and to learn the Influence of ionic strength on reaction rates. - To compare the various Theories of reaction rates and explain the postulates of quantum mechanics and operators - To determine solutions of Schrödinger equation to particle in a One Dimensional Box, Three Dimensional Box, The Simple Harmonic Oscillator, The Rigid rotator, The H-atom - To apply the Variation method and perturbation method to He atom and HMO theory to conjugated systems Unit I : Chemical Kinetics – I Unit II : Chemical Kinetics – II Unit III : Chemical Kinetics – IIIUnit IV : Quantum Mechanics – IUnit V : Quantum Mechanics – II #### I. CHEMICAL KINETICS - I #### **18 Hrs** - a) Basics of Chemical Kinetics - b) Kinetics and mechanisms of complex, consecutive and chain reactions- Formation of HBr, Decomposition of acetaldehyde and Pyrolysis of methane, Catalysis by ions of variable valency, activation of molecular hydrogen. Kinetics of reactions in solution Diffusion controlled reaction in solution, Influence of ionic strength on reaction rates The salt effects, Influence of solvent on reaction rates and Isotope effect. #### II. CHEMICAL KINETICS - II 18Hrs. - a) Techniques for fast reactions stopped flow technique, relaxation methods, temperature and pressure jump methods, shock tube methods, flash photolysis and pulse radiolysis, Influence of temperature on reaction rates and potential energy surfaces. - b) Introduction to catalysis homogeneous catalysis acid base catalysis mechanism, catalytic activity and acid base strength, acidity function. Catalysis by enzymes Michaelis Menten mechanism, influence of pH and temperature on enzyme catalysed reactions. Heterogeneous catalysis derivation of B.E.T isotherm. #### III. CHEMICAL KINETICS - III 18 Hrs. Theories of reaction rates – Collision theory, Theory of absolute reaction rates (ARRT) – Thermodynamic treatment, Theory of Unimolecular reactions – Lindemann, Hinshelwood, RRK, RRKM, Slater's theory and Marcus theory of electron transfer reactions. #### References: 1. Chemical Kinetics By Laidler #### IV. QUANTUM MECHANICS - I 18 Hrs. The schrodinger wave equation, Postulates of Quantum mechanics, Operators – Linear operator, commuting operators, Hermitian operator. Eigen functions and Eigen values, Orthogonality and Normalisation. Discussion of solutions of Schrödinger equation to particle in a One Dimensional Box, Three Dimensional Box, The Simple Harmonic Oscillator, The Rigid rotator, The H- atom, Probability Distribution curves, Angular momentum - Quantum mechanical definition of angular momentum, Commutation Relations, Physical significance of Commutation relations, Eigen functions and Eigen Values of angular momentum. #### V. QUANTUM MECHANICS -II 18 hrs Approximation methods – The Variation theorem, Linear variation principle, Application of variation method to He – atom, Perturbation theory (only Time
independent, First order and non-degenerate), Application of Perturbation Theory to He-atom. Hartree's and HartreeFock Self consistent Field Theory, Symmetric and Antisymmetric Wave functions, Pauli's exclusion principle of Antisymmetric wave functions, Huckel Molecular orbital theory – Huckel theory of conjugated system-Delocalization Energy, Bond order and Charge density calculations, Application of HMO to ethylene, butadiene, cyclobutadiene and cyclopropenyl system. #### References: - 1. Introductory Quantum Chemistry by A. K. Chandra, TataMcgrawhill. - 2. Quantum Chemistry by IRA N. Levine, Printice hall. - 3. Quantum Chemistry by Donald A. Mcquarrie. - 4. Quantum chemistry by R.K. Prasad. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|------------------| | | UNIT -1 CHEMICAL KIN | ETICS - I | | | | 1.1 | Basics of Chemical Kinetics- Rate
expression, order and
molecularity, Examples, Half-life
period, Zero order reactions | 0 | Chalk &
Talk | Black
Board | | 1.2 | Derivation of Rate constant for
first order, second order and
thirdorderreactions | 2 | Chalk &
Talk | LCD | |---------|---|---|-----------------|-------------------------| | 1.3 | Methods of determination of
order of reaction and half life
period, Factors affecting order of
reactions | 2 | Lecture | PPT &
White
board | | 1.4 | Kinetics and mechanisms of
complex, consecutive and chain
reactions- Formation of HBr | 2 | Lecture | Smart
Board | | 1.5 | Decomposition of acetaldehyde and Pyrolysis of methane, | 3 | Lecture | Black
Board | | 1.6 | Catalysisby ions of variable valency, activation of molecular hydrogen | 2 | Lecture | Black
Board | | 1.7 | Kinetics of reactions in solution – Diffusion controlled reaction in solution, Influence of ionic strength on reaction rates | Diffusion controlled reaction in ution, Influence of ionic 3 Lectur | | | | 1.8 | The salt effects, Influence of solvent on reaction rates and Isotope effect. | 2 | Discussion | Black
Board | | UNIT -2 | CHEMICAL KINETICS | - II | <u> </u> | | | 2.1 | Techniques for fast reactions – stopped flow technique, relaxation methods, | 2 | Lecture | Green
Board | | 2.2 | temperature and pressure jump methods, shock tube methods, | 2 | Chalk &
Talk | Green
Board | | 2.3 | flash photolysis and pulse radiolysis, | 2 | Lecture | LCD | | 2.4 | Influence of temperature on reaction rates and potential energy surfaces. | 2 | Chalk &
Talk | Black
Board | | 2.5 | Introduction to catalysis – homogeneous catalysis – acid base catalysis – mechanism, | 2 | Discussion | LCD | | 2.6 | catalytic activity and acid base
strength, acidity function.
Catalysis by enzymes –
Michaelis – Menten mechanism | 3 | Lecture | Black
Board | |---------|---|---------|-----------------|-----------------| | 2.7 | influence of pH and temperature on enzyme catalysed reactions. | 2 | Lecture | Black
Board | | 2.8 | Heterogeneous catalysis – derivation of B.E.T isotherm | 3 | Chalk &
Talk | Black
Board | | UNIT -3 | CHEMICAL KINETICS - IIIA | ND QUAN | TUMMECH | ANICS-I | | 3.1 | Theories of reaction rates – Collision theory, | 2 | Chalk &
Talk | Using
Models | | 3.2 | Theory of absolute reaction rates (ARRT) – Thermodynamic treatment, Theory of Unimolecular reactions – Lindemann, | 2 | Chalk &
Talk | Black
Board | | 3.3 | Hinshelwood Theory, RRK
Theory, RRKM Theory. | 2 | Chalk &
Talk | Black
Board | | 3.4 | Slater's theory and Marcus
theory of electron transfer
reactions | 2 | Chalk &
Talk | Black
Board | | 3.5 | Introduction to Quantum mechanics- Limitations of Classical mechanics, | 3 | Lecture | Black
Board | | 3.6 | Time dependent and time independent schrodinger wave equation | 3 | Lecture | Black
Board | | 3.7 | Postulates of Quantum
mechanics, Operators – Linear
operator, commuting operators,
Hermitian operator | 2 | Discussion | LCD | | 3.8 | Eigen functions and Eigen values, Orthogonality and Normalisation, Problems related to Eigen functions and commutative operators, Expressions for operators | 2 | Chalk &
Talk | Green
Board | | UNIT -4 | QUANTUM | MECHAN | NICS-II | | | 4.1 | Discussion of solutions of
Schrödinger equation to particle
in a One Dimensional
Box,Provblems related to particle
in a One Dimensional Box | 2 | Chalk &
Talk | Black
Board | |---------|---|---------|-----------------|----------------| | 4.2 | Particle in a Three Dimensional
Box, The Simple Harmonic
Oscillator, | 2 | Discussion | LCD | | 4.3 | The Rigid rotator, The H-atom, | 3 | Chalk &
Talk | Black
Board | | 4.4 | Problems related to enery , orthoganality and normalisation of wave functions of H- atom, | 2 | Discussion | LCD | | 4.5 | Quantum mechanical definition of angular momentum, Commutation Relations, Physical significance of Commutation relations, | 3 | Lecture | Black
Board | | 4.6 | Symmetric and Antisymmetric Wave functions , Pauli's exclusion principle of Antisymmetric wave functions. | 2 | Lecture | Black
Board | | 4.7 | Probability Distribution curves, Eigen functions and Eigen Values of angular momentum. | 2 | Chalk &
Talk | Black
Board | | 4.8 | Quantum numbers, Rules used
for filling up of electrons in
various shells and sub-shells and
orbitals. | 2 | Discussion | LCD | | UNIT -5 | QUANTUN | и месна | NICS-III | | | 5.1 | Approximation methods-
Introduction, Hamiltonian
operator for multi electron
atoms,and molecules | 2 | Chalk &
Talk | Black
Board | | 5.2 | The Variation theorem, Linear variation principle, Application of variation method to He | 2 | Lecture | Black
Board | | 5.3 | Perturbation theory (only Time independent, First order and non-degenerate), Application of Perturbation Theory to He-atom | 3 | Chalk &
Talk | Black
Board | |-----|--|---|-----------------|----------------| | 5.4 | Hartree's and HartreeFock Self
consistent Field | 2 | Chalk &
Talk | Black
Board | | 5.5 | Huckel Molecular orbital theory –Introduction, Huckel's approximations, Huckel theory of conjugated system-Formula | 3 | Chalk &
Talk | Black
Board | | | for calculating Delocalization
Energy, Bond order and Charge
density | | | | | 5.6 | Application of HMO to ethylene, andcyclo butadiene. | 2 | Discussion | LCD | | 5.7 | Application of HMO to, butadiene | 2 | Discussion | LCD | | 5.8 | Application of HMO to cyclopropenyl system | 2 | Lecture | Black
Board | | | C1 | C2 | С3 | С4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |--------|---------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Seminar | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | Кз | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | |-------------------|---|---|----|----|----|---|----|--------| | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : K1- Remember, K2-Understand, K3-Apply, K4-Analyse ## **EVALUATION PATTERN** | SCHOLASTIC | | NON -
SCHOLASTIC | MARKS | | | | | |------------|----|---------------------|-------|----------------|-----|-----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 – Average of Two Session Wise Tests C2 – Average of Two Monthly Tests C3 - Mid Sem Test C4 – Best of Two Weekly Tests C5 – Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----------------|---|--|---------------------------| | CO 1 | To Understand the concept of rate
constants,ionic strength, Fast
reactions, Catalysis, orthogonality
and normalization and to solve
the problems related to rate
constants | K2, K3 , K4 &
K5 | PSO1,PSO2PSO5
&PSO7 | | CO 2 | To explore and to evaluate the kinetics of complex, consecutive and chain reactions and Kinetics of reactions in solution and to learn the Influence of ionic strength on reaction rates. | K2, K3 , K4 &
K5 | PSO3,PSO5,
PSO6 & PSO7 | | CO 3 | To compare the various Theories of reaction
rates and explain the postulates of quantum mechanics and operators | K2, K3 , K4 &
K5 | PSO4 , PSO5&
PSO6 | | CO 4 | To determine solutions of
Schrödinger equation to particle in
a One Dimensional Box, Three
Dimensional Box, The Simple
Harmonic Oscillator, The Rigid
rotator, The H-atom | K2, K3 , K4 &
K5 | PSO1,
PSO2&PSO7 | | CO ₅ | To apply the Variation method
and perturbation method to He
atom and HMO theory to
conjugated systems | K2, K3, K4&
K5 | PSO1& PSO2 | ## **Mapping COs Consistency with PSOs** | CO/
PSO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | |------------|------|------|------|------|------|------|------|------|------| | CO1 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | | CO2 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 2 | 2 | | CO3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | | CO4 | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | | CO5 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ## Mapping of C0s with POs | CO/ PSO | PO1 | PO2 | РО3 | PO4 | |-----------------|-----|-----|-----|-----| | CO ₁ | 3 | 2 | 3 | 2 | | CO2 | 3 | 3 | 2 | 2 | | CO ₃ | 2 | 1 | 3 | 2 | | CO ₄ | 3 | 1 | 2 | 2 | | CO ₅ | 2 | 2 | 3 | 2 | #### **COURSE DESIGNER:** - 1. Dr.Sukumari - 2. Dr. K.R. Subimol Forwarded By HOD'S Signature B-Tedora. # CBCS Curriculum for M.Sc. Chemistry SEMESTER-II #### (For those who joined in 2019 onwards) | PROGRAM | COURSE | COURSE TITLE | CATE | HRS/WEE | CREDIT | |---------|---------|---------------------------------------|------|---------|--------| | ME CODE | CODE | | GORY | K | S | | PSCH | 19PG2C9 | INORGANIC
QUANTITATIVE
ANALYSIS | LAB | 4 | 2 | #### COURSE DESCRIPTION: This course gives training to prepare inorganic complexes in pure form and quantitative estimation of metal ions present in the solutions #### **COURSE OBJECTIVE:** This paper deals with the preparation of inorganic complexes from simple salts and also the estimation of amount of metal ions present in the given solution by using gravimetric and volumetic procedures #### **COURSE OUTCOMES** After successful completion of the course, the students will be able to - **CO 1**-Describe the principle and procedure of quantitative analysis - **CO 2**-identify thesuitable complexing agents for the given metal ions - **CO 3**-draw the structure of various ligands and complexes - **CO 4**-distinguish volumetric analysis and gravimetic analysis - **CO 5**-Apply the expressions of various terms in calculations #### I.PREPARATION OF INORGANIC COMPLEXES: - 1. Hexathioureaplumbusnitrate - 2. Potassium cupric sulphate - 3. Trioxalatoaluminate(III). - 4. Tristhioureacopper(I)sulphate - 5. Sodiumnitroprusside - 6. Tetramminecopper(II)sulphate #### II.VOLUMETRIC ANALYSIS - 1. Volumetric estimation of from Cu and Zn saltsolution mixture - 2. Volumetric estimation of Cu from Cu and Ni salt solutionmixture - 3. Volumetric estimation of Cafrom Ca and Mg salt solutionmixture - 4. Volumetric estimation of Ba from Ba and Zn salt solutionmixture #### III. GRAVIMETRIC ANALYSIS - 1. Gravimetric estimation of Zn from Cu and Zn salt solution mixture - 2. Gravimetric estimation of Ni from Cu and Ni salt solutionmixture - 3. Gravimetric estimation of Mg from Ca and Mg salt solutionmixture - 4. Gravimetric estimation of Zn from Ba and Zn salt solutionmixture #### REFERENCE BOOKS: - 1. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S. Viswanathan Co. Pvt., 1996. - 2. G. Marr and B. W. Rockett, Practical Inorganic Chemistry, VonNostrand Reinhold Co., London (1972). - 3. J. Bassett, G. H. Jeffery and J. Mendham, and R. C. Denny, Vogel's text book of Quantitative Chemical Analysis, 5th Edition, Longman Scientific and Technical (1999). | NO. | COURSE OUTCOMES | PSOs ADDRESSED | |---------|---|--------------------------------| | CO
1 | Describe the principle and procedure of quantitative analysis | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 2 | Identify thesuitable complexing agents for the given metal ions | PSO1, PSO2, PSO3,
PSO6&PSO7 | | со з | Draw the structure of various ligands and complexes | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 4 | Distinguish volumetric analysis and gravimetic analysis | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO
5 | Apply the expressions of various terms in calculations | PSO1, PSO2, PSO3,
PSO6&PSO7 | ## Mapping of COs with PSOs | CO
/
PSO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | |----------------|------|------|------|------|------|------|------|------|------| | CO1 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO2 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | соз | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO4 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO5 | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | ## Mapping of COs with POs | CO/ PSO | PO1 | PO2 | РО3 | PO4 | |---------|-----|-----|-----|-----| | CO1 | 3 | 3 | 2 | 1 | | CO2 | 3 | 3 | 2 | 1 | | CO3 | 3 | 3 | 2 | 1 | | CO4 | 3 | 3 | 2 | 1 | | CO5 | 3 | 3 | 2 | 1 | **Note**: ☐ Strongly Correlated - **3** ☐ Moderately Correlated - ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Mrs. R. M. Nagalakshmi 2. Dr. Sr. J. Arul Mary Forwarded By **HOD'S Signature** 8-Tedora. # CBCS Curriculum for M.Sc. Chemistry #### SEMESTER -II #### For those who joined in 2017 onwards | PROGRAM
ME CODE | COURSE
CODE | COURSE TITLE | CATEGORY | HRS/WE
EK | CRED
ITS | |--------------------|----------------|--------------------------------------|----------|--------------|-------------| | PSCH | 19PG2C10 | ORGANIC
QUANTITAT
IVE ANALYSIS | Lab | 4 | 2 | #### **Course Descriptive:** This course gives a hands on experience of quantitatively analyzing organic compound and to synthesis organic compounds using two stages. #### **Course Objective:** To make the students to estimate quantitatively the given substance using suitable procedure and also prepare organic compounds using single stage. #### **Course Outcomes:** - Students understand the quantitative analysis - To develop the ability for synthesizing organic compounds by single stage. - To develop the ability for synthesizing organic compounds by double stage. - To study the reaction mechanism. #### **Organic Estimations** - 1. EstimationofGlucose(Laneand eynon'smethod) - 2. EstimationofGlucose(Bertrand'smethod) - 3. EstimationofGlycine - 4. EstimationofEthylMethylKetone #### **Double stage Organic synthesis:** #### Synthesis of: - 1. Benzanilide from benzophenoneoxime - 2. p-bromoanilinefromp-bromoacetanilide UsageofGreenreagentCAN,KBrinstead ofBr2andGlacialaceticacid) - 3. Tribromoanilinefromaniline (Usage of Green reagent CAN, KBrinstead of Br2 and Glacial acetic acid) - 4.P-Nitroaniline fromacetanilide #### References: - 1. Ganapragasam& Ramamurthy G, *Organic Chemistry LabManual* 2 ndEd., S.Vishwanathan Printers and Publishers (P)Ltd., Chennai, 2007. - 2. Furniss BS,HannafordAJ,SmithPWG and Tatchell AR, *Vogel's Text book of Practical Organic Chemistry*, 5th Ed., Pearson Publication. Vengataswaran V et al., *Basic Principle of Practical Chemistry*, Sultan Chand andsons,New Delhi, 1997 #### **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|-------------------------------------| | CO 1 | Acquire the knowledge of quantitative analysis | K2 | PSO1& PSO3 | | CO 2 | Synthesize organic compounds by double stage. | K2, K3 | PSO3 | | СО 3 | Synthesize organic compounds by double stage | K3 & K4 | PSo ₃ , PSO ₅ | | CO 4 | Describe the reaction mechanism. | K2, K3 & K4 | PSO1,PSO5 | | CO 5 | |------| |------| ## **Mapping of COs with PSOs** | CO/
PSO | PSO ₁ | PSO ₂ | PSO ₃ | PSO ₄ | PSO ₅ | PSO6 | PSO ₇ | PSO8 | PSO9 | |-----------------|------------------|------------------|------------------|------------------|------------------|------|------------------|------|------| | CO ₁ | 3 | 2 | 3 | 2 | 1 | 2 | 1 | 1 | 2 | | CO ₂ | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | | CO ₃ | 2 | 1 | 3 | 2 | 3 | 2 | 1 | 2 | 2 | | CO ₄ | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 1 | 2 | | CO ₅ | 1 | 3 | 1 | 2 | 3 | 2 | 2 | 1 | 1 | ## **Mapping of COs with POs** | CO/PSO | PO1 | PO2 | РО3 | PO4 | |-----------------|-----|-----|-----|-----| | CO ₁ | 3 | 2 | 3 | 1 | | CO2 | 2 | 3 | 3 | 1 | | CO ₃ | 3 | 2 | 3 | 1 | | CO ₄ | 3 | 3 | 2 | 1 | | CO ₅ | 2 | 3 | 2 | 1 | Note: ♦ Strongly Correlated - 3 ♦ Moderately Correlated - 2Weakly **Correlated -1** #### **COURSE DESIGNER:** 1. Dr. ARUL DEEPA 2. Dr. K.R.SUBIMOL B-Tedora. Forwarded By HOD'S Signature #### SEMESTER - II #### For those who joined from 2021 onwards | PROGRAM | COURSE | COURSE TITLE | CATEG | HRS/WE | CREDI | |---------|---------|---|-------|--------|-------| | ME CODE | CODE | | ORY | EK | TS | | PSCH | 21C2EDC | ANALYSIS OF SOIL,
WATER, FOOD,
COSMETICS AND
OIL | EDC | 3 | 3 | #### **COURSE DESCRIPTION** This paper focuses on all the important aspects of theory about soil, water, food chemistry, cosmetics and oil. #### **COURSE OUTCOME:** After completion of the course the students should be able to: - Acquire the complete knowledge of soil and its texture - Develop idea about water and its treatment - Idetify different types of food colour, aditives and food adulterants - Learn the ingredients required for the preparation of various types of shampoos, skin powder, nail polish. - Understand the need of detoxification of oil and various adulterants present in oil. #### **COURSE OBJECTIVES** | To understand the concepts of soil texture, water analysis. | |---| | To acquire the basic knowledge about food colour, food | | additives and food and adulterants. | | To learn sources of oil, analysis of oil and adulterant
in oil. | UNITS #### UNIT -I SOIL (9 HRS.) Composition of soil: Organic and Inorganic constituents. Soil acidity: buffering capacity of soils. Liming of soil. Absorption of cations and anions: availability of soil nutrients to plants. #### UNIT -II WATER (9 HRS.) Importance of water.Naturalwater.Sources of water. Drinking water – making water fit to drink – chlorination. Water pollution-Chemicals causing water contamination – contamination by fertilizers, soaps and detergents and their effect. #### UNIT-III FOOD CHEMISTRY (9HRS.) Food- composition of food -Color- Natural colouring matters – chlorophylls – carotenoids -Synthetic colours – permitted colours-banned colours - FPO, FSSAC, Agmark – Flavors - Food additives-Food adulterants and their detection in various food items. #### **UNIT -IV COSMETICS** (9HRS.) Dental preparations-Tooth paste-Ingredients, their characteristic functios- Soap-hard soap and soft soap- Hair care preparations-Shampoo Shampoos – different kinds of shampoos –anti dandruff, anti-lice, herbal and baby shampoos -Hair dye –manufacture of conditioners -skin preparation –skin powder, nail polish, lipsticks. #### UNIT -V OIL (9 HRS.) Natural sources of oils and fats, oils rich in palmitic acid and stearic acid- processing of fats and oils- analysis of oils- technical refining of oils for industrial uses- detoxification- shelf life prediction test-adulterants in oils. #### **REFERENCES:** - G.T. Austin : shreve's Chemical Process Industries, 5th edition, Mc- Graw-Hill, 1984 - Lakshmi, S. Pharmaceutical Chemistry, S. Chand and Sons, New Delhi, 1995. - 3. A.K. De, Environmental Chemistry, New Age International Publishers, 2018. - 4. JayashreeGhosh, Fundamental concepts of Applied chemistry, S.Chand publications, New Delhi (2013). - 5. J.V.Simons, Science and Beauty Business Vol-1, Macmilan Education Ltd, 1989. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | | | | |---------------|------------------------------------|--------------------|----------------------|-------------------|--|--|--|--|--|--|--|--| | | UNIT -1 TITLE - SOIL | | | | | | | | | | | | | 1.1 | Composition of soil | 1 | Chalk &
Talk | Black
Board | | | | | | | | | | 1.2 | Organic and Inorganic constituents | 1 | Chalk &
Talk | Black
Board | | | | | | | | | | 1.3 | Soil acidity | 1 | Chalk &
Talk | Black
Board | | | | | | | | | | 1.4 | buffering capacity of soils | 1 | Chalk &
Talk | PPT & White board | | | | | | | | | | 1.5 | Liming of soil | 1 | Chalk &
Talk | Black
Board | | | | | | | | | | 1.6 | Absorption of cations | 1 | Chalk &
Talk | Black
Board | | | | | | | | | | 1.7 | Absorption of anions: | 2 | Chalk &
Talk | PPT & White board | | | | | | | | | | CBCS Curriculum for PG Chemistry | | | | | | | | | | | |----------------------------------|---|---|-----------------|-----------------|-----------------------|--|--|--|--|--| | 1.8 | availability of soil nutrients to plants. | 1 | | Chalk &
Talk | Black
Board | | | | | | | UNIT - 2 TITLE -WATER | | | | | | | | | | | | 2.1 | Importance of water | 1 | | Chalk &
Talk | Black
Board | | | | | | | 2.2 | Naturalwater | 1 | | Chalk &
Talk | Black
Board | | | | | | | 2.3 | Sources of water | 1 | | Chalk &
Talk | Black Board | | | | | | | 2.4 | Drinking water | 1 | C | halk & Talk | Black Board | | | | | | | 2.5 | Making water fit to drink – chlorination | 1 | C | halk & Talk | PPT & White board | | | | | | | 2.6 | Water pollution | 1 | С | halk & Talk | Black Board | | | | | | | 2.7 | Chemicals causing water contamination – | 1 | С | halk & Talk | Black Board | | | | | | | 2.8 | contamination by fertilizers,
soaps and detergents and their
effect | 2 | D | emonstration | Various raw materials | | | | | | | UNIT - | 3 TITLE -FOOD CHEMISTRY | | | , | | | | | | | | 3.1 | Food- composition of food | 1 | | Chalk &
Talk | Black
Board | | | | | | | 3.2 | Food colour | 1 | | Chalk &
Talk | Black
Board | | | | | | | 3.3 | Natural colouring matters
chlorophylls – carotenoids | 1 | | Chalk &
Talk | Black
Board | | | | | | | 3.4 | Synthetic colours | 1 | Chalk &
Talk | | Black
Board | | | | | | | 3.5 | permitted colours | 1 | Chalk &
Talk | | Black
Board | | | | | | | 3.6 | banned colours - FPO, FSSAC,
Agmark – Flavors | 1 | | Chalk &
Talk | Black
Board | | | | | | | 3.7 | Food additives | 1 | Chalk &
Talk | Black
Board | |-----|---|---|-----------------|----------------| | 3.8 | Food adulterants and their detection in various food items. | 2 | Chalk &
Talk | Black
Board | | UNIT -4 TITLE-COSMETICS | | | | | | | | | | |-------------------------|---|---|-----------------|----------------|--|--|--|--|--| | 4.1 | Dental preparations-Tooth paste-
Ingredients, their characteristic
functios | | Chalk &
Talk | Black
Board | | | | | | | 4.2 | Soap-hard soap and soft soap | 1 | Chalk &
Talk | LCD | | | | | | | 4.3 | Hair care preparations-Shampoo
different kinds of shampoos –anti
dandruff and anti-lice | 2 | Chalk &
Talk | Black
Board | | | | | | | 4.4 | herbal and baby shampoos | 1 | Chalk &
Talk | Black
Board | | | | | | | 4.5 | Hair dye –manufacture of conditioners | 1 | Chalk &
Talk | Black
Board | | | | | | | 4.6 | skin preparation –skin powder | 1 | Chalk &
Talk | Black
Board | | | | | | | 4.7 | nail polish | 1 | Chalk &
Talk | Black
Board | | | | | | | 4.8 | lipsticks | 1 | Chalk &
Talk | Black
Board | | | | | | | UNIT - 5 | 5 TITLE -OILS | | | | | | | | | | 5.1 | Natural sources of oils and fats | 1 | Chalk &
Talk | Black
Board | | | | | | | 5.2 | oils rich in palmitic acid and static acid | 1 | Chalk &
Talk | LCD | | | | | | | 5.3 | processing of fats and oils | 1 | Chalk &
Talk | Black
Board | | | | | | | 5.4 | analysis of oils | 2 | Chalk &
Talk | Black
Board | |-----|--|---|-----------------|----------------| | 5.5 | technical refining of oils for industrial uses | 1 | Chalk &
Talk | Black
Board | | 5.6 | detoxification | 1 | Chalk &
Talk | Black
Board | | 5.7 | shelf life prediction test | 1 | Chalk &
Talk | Black
Board | | 5.8 | adulterants in oils | 1 | Chalk &
Talk | Black
Board | | | C1 | C2 | C3 | Total
Scholastic
Marks | Non
Scholastic
Marks
C4 | CIA
Total | | |------------|--------|---------|---------------------|------------------------------|----------------------------------|--------------|--------------------| | Levels | Weekly | Monthly | MID-
SEM
TEST | | | | % of
Assessment | | | 5Mks. | 10 Mks. | 20 Mks. | 35 Mks. | 5 Mks. | 40 Mks. | | | K1 | - | 5 Mks. | 5 Mks. | 10 | - | 10 | 25 % | | K2 | - | 5 Mks. | 8 Mks. | 13 | - | 13 | 32.5 % | | К3 | 5 Mks. | - | 7 Mks. | 12 | - | 12 | 30 % | | Non | - | - | - | - | 5 | 5 | 12.5 % | | Scholastic | | | | | | | | | Total | 5 | 10 | 20 | 35 | 5 | 40 | 100 % | | CIA | | | | | | |----------------|----|--|--|--|--| | Scholastic | 35 | | | | | | Non Scholastic | 5 | | | | | | | 40 | | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K1**-Understand, **K2**-Apply, **K3**-Analyse ✓ The I PG course teachers are requested to start conducting S1, W1, M1, #### **EVALUATION PATTERN** | | SCHO | LASTIC | | NON -
SCHOLASTIC | | MARKS | | |----|------|--------|----|---------------------|-----|-------|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Average of Two Session Wise Tests **C2** – Average of Two Monthly Tests C3 - Mid Sem Test C4 – Best of Two Weekly Tests **C5** – Non - Scholastic ## **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----------------|---|--|-------------------| | CO 1 | Analyse the buffering capacity of soil, p H, cation exchange capacity, nutrient availability of soil, fertility status of soil. | K1 | PSO1 | | CO 2 | Analyze the p H of water, hardness of water and acquire knowledge of advanced water purification techniques (and water treatment) | | PSO2 | | СО 3 | Identify different types of food colour,additives and food adulterants | K1 | PSO2 | | CO 4 | Learn the ingredients required for the preparation of the various types of shampoos,skin powder and nail polish | K2 | PSO4 | | CO ₅ | Analyze and Detect the presence of adulderants in oils and to compare the physical and chemical refining of oils | К3 | PSO5 | # **Mapping COs Consistency with PSOs** | CO/PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |--------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 3 | 1 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | | CO2 | 3 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | | CO3 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | CO4 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | | CO5 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | | CO/
PSO PO | PO2 | РО3 | PO ₄ | |---------------|-----|-----|-----------------| |---------------|-----|-----|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | |-----------------|---|---|---|---| | CO ₂ | 3 | 2 | 2 | 2 | | CO ₃ | 3 | 3 | 3 | 3 | | CO ₄ | 3 | 2 | 3 | 2 | | CO ₅ | 3 | 3 | 2 | 3 | **Note**: ♦ Strongly
Correlated – 3 ♦ WeaklyCorrelated -1 ◆ ModeratelyCorrelated – 2 # **COURSE DESIGNER:** - 1. Mrs. RM. Nagalakshmi - 2. Dr. B.SUGANTHANA **Forwarded By** **HOD'S Signature.** B-Tedora. # FATIMA COLLEGE (AUTONOMOUS) MADURAI18 INTERNSHIP-19PG3SICI SEMESTER -III (For those who joined from 2007 onwards) # RESEARCH WORK All the second PG students are sent to internship in various reputed research institutions # CBCS Curriculum for M.Sc. Chemistry SEMESTER –III #### For those who joined in 2019 onwards | PROGRAMM | COURSE | COURSE | CATEGOR | HRS/WEE | CREDIT | |----------|----------|---|---------------|---------|--------| | E CODE | CODE | TITLE | Y | K | S | | PSCH | 19PG3C11 | Organic
chemistry-III
(Spectroscopy
and Pericyclic
reactions) | MAJOR
CORE | 6 | 5 | **COURSE DESCRIPTION:** This course provides the study of different aspects of 1D and 2D NMR spectral techniques and mass spectroscopy. This paper enable the students to understand the concept and reactivity of organic reactions under photochemical conditions. **COURSE OBJECTIVES:** This paper provides an elaborate study of organic spectroscopy and their applications in structural elucidation of organic compounds. This paper also deals with reactions that are taking place under photochemical conditions and pericyclic reactions. **COURSE OUTCOMES:** On the successful completion of the course, students will be able : - To acquire a complete knowledge of the basic principles of 1H-NMR, 13C-NMR and Mass spectroscopy - To be acquainted with complete knowledge of photochemistry of ketone & cyclo addition reactions and to develop an understanding of the significance of the number, and splitting of signals in NMR - To be competent to assign structures to simple molecules on the basis of nuclear magnetic resonance spectra - To distinguish the similarities and differences of Pericyclic reactions and Cyclo addition and sigmatropic reactions - To apply the Spectral concepts to solve the problems, to elucidate the structures of simple organic compounds using the data from all the spectral techniques #### UNITS #### UNIT I-1H -NMR SPECTROSCOPY (18 HRS) - i) Introduction Relexation process Instrumentation(not required) Chemical shift Factors influencing chemical shift Inductive effect, Vanderwaalsdeshielding, anisotropic effects, Hydrogen bonding, solvent effects. - ii)H¹-NMR spectroscopy-coupling constant J-factors influencing coupling constant J-classification (ABX, AMX,& A2B2) Geminal,Vicinal and long range coupling- Shift reagents -NOE. # UNIT II-13C- NMR SPECTROSCOPY & 2D-NMR SPECTROSCOPY (18 HRS) C¹³-Spectroscopy-introduction-chemical shifts(aliphatic, olefinic, alkyne, aromatic)-coupling constants. Broad band decoupling, Off-resonance decoupling. 2D NMR techniques such as HOMOCOR, HETEROCOR, NOESY, DEPT, INEPT, APT, INADEQUATE. Instrumentation(not required) # UNIT -III MASS SPECTROSCOPY (18 HRS.) Mass Spectroscopy-Introduction –ion production-EI,CI, FD and FAB- factors affecting fragmentation, Fragmentation of organic compounds-molecular ion peak,meta stable peak-Mc Lafferty rearrangement-Nitrogen rule-Retro diels-Alder reaction. ## UNIT -IV ORGANIC PHOTOCHEMISTY (18HRS.) Photochemistry of alkenes, intramolecular reactions of olefinic bond- geometrical isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes (di-pi-methane rearrangement) Photochemistry of carbonyl compounds- dimerisation and Paterno-Buchi reaction-intramolecular reaction- saturated, cyclic and acyclic α,β -unsaturated compounds- Barton reaction, Norrish Type I and Type II reactions photoreduction of ketones #### UNIT -V : PERICYCLIC REACTIONS (18HRS.) Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatrienes classification of pericyclic reactions- FMO and PMO approaches (excluding Correlation diagram method) – Electrocyclicreactitons- conrotatory and disrotatory motions- 4n, 4n+2- Cycloadditionsuprafacial and antarafacial additions, (2+2)(4+2)cycloadditions, and Sigmatropic 5,5-sigmatropic Cheleotropicreactitonsrearrangement-3,3 and rearrangements, Claisen, Cope rearrangements #### REFERENCES: - 1. R. E. Ireland, Organic synthesis, Prentice-Hall of India Privated Ltd., 1988. - 2. Norman and J. M. Coxon, Principles of organic synthesis, ELBS, 3rd Ed., 1993. - 3. Jagdamba Singh, Photochemistry and Pericyclic Reactions, New age international publishers, 2009. - 4. K. K. Rohatgi-Mukherjee, fundamentals of photochemistry, New age international publishers, 2006. - 5. lan Fleming, Pericyclic reactions, oxford Publishers, 2009. - 6. W. Kemp, Organic spectroscopy, McMillan, 1991. - 7. R. M. Silverstein and F. X. Webster, Spectrometric Identification of organic compounds, John Wiley & Sons, Inc., 6th Ed. 2004 - 8. P.S.Kalsi, Spectroscopy of organic compounds, New age international publishers, 6th edition, 2009. # **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|------------------| | UNIT -1 | ¹ H -NMR SPECTROSCOPY | (15 Hours) | | | | 1.1 | Introduction - Relexation process | 2 | Chalk &
Talk | Black
Board | | 1.2 | Chemical shift - Factors influencing chemical shift | 4 | Chalk &
Talk | LCD | | 1.3 | Hydrogen bonding, solvent effects. | 1 | Lecture | PPT | | | | | | | |-------------------|---|---|-----------------|----------------|--|--|--|--|--|--| | 1.4 | coupling constant J-factors influencing coupling constant | 2 | Lecture | РРТ | | | | | | | | 1.5 | J-classification (ABX, AMX, ABC & A2B2) | 3 | Lecture | Black
Board | | | | | | | | 1.6 | Shift reagents | 2 | Discussion | Black
Board | | | | | | | | 1.7 | NOE. | 1 | Lecture | Black
Board | | | | | | | | UNIT -2
Hours) | UNIT -2 ¹³ C- NMR SPECTROSCOPY & 2D-NMR SPECTROSCOPY (15 Hours) | | | | | | | | | | | 2.1 | C ¹³ -Spectroscopy-introduction | 1 | Lecture | Black
Board | | | | | | | | 2.2 | Chemical shifts(aliphatic, olefinic, alkyne, aromatic)- coupling constants. | 3 | Chalk &
Talk | Black
Board | | | | | | | | 2.3 | Broad band decoupling, Off-
resonance decoupling. | 2 | Chalk & | Black | | | | | | | | 2.4 | 2D NMR techniques - HOMOCOR
& HETEROCOR | 3 | Chalk &
Talk | Black
Board | | | | | | | | 2.5 | NOESY&DEPT | 3 | Chalk &
Talk | Black
Board | | | | | | | | 2.6 | INEPT, APT& INADEQUATE | 3 | Chalk &
Talk | Black
Board | | | | | | | | UNIT -3 | MASS SPECTROSCOPY | | (15 Hours) |) | | | | | | | | 3.1 | Mass Spectroscopy-Introduction | 2 | Chalk &
Talk | Black
Board | | | | | | | | 3.2 | Ion production-EI,CI | 2 | Chalk &
Talk | PPT | | | | | | | | 3.3 | FD and FAB | 2 | Chalk &
Talk | РРТ | |---------|---|---|-----------------|----------------| | 3.4 | Factors affecting fragmentation | 3 | Chalk &
Talk | PPT | | 3.5 | Molecular ion peak & meta stable peak | 2 | Chalk &
Talk | Black
Board | | 3.6 | Mc Lafferty rearrangement | 2 | Chalk &
Talk | Black
Board | | 3.7 | Nitrogen rule-Retro diels-Alder reaction. | 2 | Chalk &
Talk | Black
Board | | UNIT -2 | ORGANIC PHOTOCHEMISTRY | | (15 Hour | s) | | 4.1 | Photochemistry of alkenes | 3 | Chalk &
Talk | Black
Board | | 4.2 | Intramolecular reactions of olefinic bond- geometrical isomerism | 2 | Chalk &
Talk | Black
Board | | 4.3 | Cyclisation reactions,
rearrangement of 1,4- and 1,5-
dienes | 3 | Chalk &
Talk | Black
Board | | 4.4 | Photochemistry of carbonyl
compounds- dimerisation-Norrish
Type I and Type II reactions | 4 | Chalk &
Talk | PPT | | 4.5 | Paterno-Buchi reaction | 1 | Chalk &
Talk | Black
Board | | 4.6 | Barton reaction, photoreduction of ketones | 2 | Chalk &
Talk | Black
Board | | UNIT-5- | PERICYCLIC REACTIONS | | (15 H | ours) | | 5.1 | Frontier orbitals of ethylene, 1,3-
butadiene, 1,3,5-hexatrienes and
allyl systems | 2 | Chalk &
Talk | PPT | | 5.2 | FMO and PMO approaches | 3 | Chalk &
Talk | Black
Board | | 5.3 | Electrocyclic reactitons-
conrotatory and disrotatory
motions | 2 | Chalk &
Talk | Black
Board | |-----|--|---|-----------------|----------------| | 5.4 | Electrocyclic reactitons- 4n & 4n+2 | 3 | Chalk &
Talk | Black
Board | | 5.5 | Cycloaddition- suprafacial and antarafacial additions | 1 | Chalk &
Talk | РРТ | | 5.6 | Cycloaddition- (2+2) and (4+2) cycloadditions | 1 | Chalk &
Talk | Black
Board | | 5.7 | Cheleotropic reactitons | 1 | Chalk &
Talk | Black
Board | | 5.8 | Sigmatropic rearrangement- 3,3
and 5,5-sigmatropic
rearrangements, Claisen, Cope
rearrangements | 2 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |-------------------|---------|------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Seminar | Better of W1, W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessme
nt | | | 5 Mks. | 5Mks. | 10 Mks | 15 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K2 | 5 | - | - | 2 1/2 | - | | - | - | | К3 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | K4 | - | - | 3 | 5 | 12 | | 12 | 30 % | | К5 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | |----------------|----| | Scholastic | 35 | | Non Scholastic | 5 | | | 40 | - ✓ All the course outcomes are to be assessed in the various CIA components. - \checkmark
The levels of CIA Assessment based on Revised Bloom's Taxonomy for IPG are: **K2-**Understand, **K3-**Apply, **K4-**Analyse, K5 - Evaluate # **EVALUATION PATTERN** | | SCHOLASTIC NON - SCHOLASTIC | | | | MARKS | | | |----|-----------------------------|----|----|----------------|---------|----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA ESE | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 - Best of Two Weekly Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Seminar (Once in a Sem.) C5 - Non - Scholastic # COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|--------------------| | CO 1 | To acquire a complete
knowledge of the basic
principles of ¹ H-NMR, ¹³ C-NMR
and Mass spectroscopy | K2, K3, K4
&K5 | PSO1& PSO2 | | CO 2 | To be acquainted with complete
knowledge of the significance of
the number, and splitting of
signals in NMR | K2, K3, K4
&K5 | PSO1,PSO3&
PSO6 | | со з | To be competent to assign
structures to simple molecules
on the basis of Mass spectra | K2, K3, K4
&K5 | PSO5&PSO8 | | CO 4 | To understand the concepts of photochemistry of ketone & alkenes and to enumerate the cyclo addition reactions of carbonyl compounds | K2, K3, K4
&K5 | PSO1,PSO4&PSO6 | | CO 5 | To distinguish the similarities
and differences of Pericyclic
reactions and Cyclo addition
and sigmatropic reactions | K2, K3, K4
&K5 | PSO5, PSO6 | # **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₂ | 3 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | | CO ₄ | 3 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 3 | 2 | | CO ₂ | 3 | 2 | 3 | 2 | | CO ₃ | 3 | 2 | 3 | 2 | | CO ₄ | 3 | 2 | 3 | 2 | | CO ₅ | 3 | 2 | 3 | 2 | **Note:** ♦ Strongly Correlated - 3 ♦ Moderately Correlated - 2 ♦ Weakly Correlated -1 # **COURSE DESIGNER:** - 1. Dr.A.Rajeswari - 2. Dr.B.Vinosha Forwarded By **HOD'S Signatur** #### SEMESTER -III ## For those who joined in 2019 onwards | PROGRAMM
E CODE | COURSE | COURSE
TITLE | CATEGOR
Y | HRS/
WEE
K | CREDITS | |--------------------|----------|---|-------------------|------------------|---------| | PSCH | 19PG3C12 | Physical chemistry-III (Group Theory, Surface Chemistry and Macromolecules) | MAJO
R
CORE | 6Hrs. | 5 | **Objective:** This course covers the detailed study of group theory and its application and also covers the principles of surface chemistry, and a brief study of macromolecules. # **COURSE OUTCOME** #### After successful completion of the course, the students are able - To learn about symmetry elements and symmetry operations, the point groups and character table - To Describe the selection rule for infrared-active and Raman active transitions, electronic transitions - To analyse the hybridization of given compounds and to apply HMO theory to Ethylene and some conjugated systems - To Classify of surface active agents, Polymers, and to derive Gibbs adsorption and BET isotherms - To explain the kinetics of vinyl, cationic and anionic polymerizations and to determine the mass of polymers. UNIT-I: Group Theory I 18 Hrs UNIT-II: Group Theory II 18 Hrs UNIT-III: Group Theory III 18 Hrs UNIT-IV: Surface Chemistry 18 hrs UNIT-V: Macromolecules 18 hrs # UNII: Group Theory I 18 Hrs. Symmetry elements and symmetry operations- Point groups – symmetry number from point groups- matrix representation of symmetry operations- Reducible and Irreducible representation – Statement of orthogonality theorem – Character tables and their constructions- C_{2V} , C_{3V} , D_{3h} and C_4 point groups. # UNIT: II Group Theory II 18 Hrs Application of group theory to spectroscopy and molecular problems - Symmetries of Normal modes of vibration- Application of group theory to normal mode of analysis (Water, ammonia and ethylene) - Symmetry integrals- Applications for spectral selection Rules of vibration spectra- IR and Raman fundamentals- Symmetries of molecular orbitals - Selection rules- electronic transitions. # UNIT: III Group Theory III 18 Hrs Group theory and Quantum mechanics- Wave function as a basis for irreducible representation – Hybridization- sp² and sp³, HMO and HMO calculation- delocalization of ethylene, Butadiene and cyclopropenyl system. #### References: - 1) F.A.Cotton-Chemical application of group theory-wiley eastern Ltd-1971. - 2) V.Ramakrishnan and M.S.Gopinathan-Group theory in Chemistry-Vishal -1988 # **UNIT- IV: Surface Chemistry** 18 hrs Adsorption- surface tension, Capillary action, pressure difference across curved surface(laplace equations). Vapour pressure of droplets (Kelvine equation) Gibbs adsorbtion isotherm, estimatiom of surface area (BET equation) Surface films on liquids. (Electrokinetic phenomenon), catalytic activity at surfaces. #### Micells: Surface active agents, Classification of surface active agents, micellipation, hydrophopic interactions, critical micellarconcentrartion (CMC), factors affecting the CMC surfactants. Counter ion binding to micells, thermodynamics of micellipation.phaseseperation and mass action models, solubilazation, micro emulsion reverse micells. #### References: Micelles, Theoretical and applied aspects .V. Aloroi, Plenum. # **UNIT-V:** Macromolecules: 20 Hrs Polymer-definition and types of polymer, kinetics of polymerization (Vinyl, Cationic and Anionic polymerization). Electrically conducting, fire resistant, liquid crystal polymers. Molecular mass, number and mass average molecular mass, molecular mass determination (viscometer, light scattering and sedimentation methods). Chain configuration of macro molecules, calculation of various dimensions of various chain structures. #### References: Introduction to polymer science-V.R. Gowarikar, N. V.Viswanathan and J.sridhar.willey eastern. # COURSE CONTENTS & LECTURE SCHEDULE: | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|------------------| | | UNIT -1 Group Theory I | | | | | 1.1 | Group Theory I -Symmetry elements and symmetry operations- Definition with examples | 2 | Chalk &
Talk | Black
Board | | Group definition, Types of groups with examples, Sub-groups | 2 | Chalk &
Talk | LCD | |--|--|--
--| | Class, conjugate elements-
definition, examples, Number of
classes and sub-groups | 2 | Lecture | PPT &
White
board | | Point group introduction, how to
arrive at the point group of
molecules, Point group and
geometry, Examples for various
point groups | 3 | Lecture | Smart
Board | | Symmetry number from point groups- matrix representation of symmetry operations | 2 | Lecture | Black
Board | | Reducible and Irreducible representation – Statement and Consequences of the Great orthogonality theorem, Introduction to Character table | 3 | Lecture | Black
Board | | Construction of character table for C_{2V} , C_{3V} point groups | 2 | Lecture | White
board | | Construction of character table for D_{3h} and C_4 point groups | 2 | Discussion | Black
Board | | Group Theory - II | | | | | Application of group theory to
spectroscopy and molecular
problems- Introduction | 2 | Lecture | Green
Board | | Symmetries of Normal modes of vibration- Application of group theory to normal mode of analysis to Water, | 2 | Chalk &
Talk | Green
Board | | Application of group theory to
normal mode of analysis to
ammonia | 2 | Lecture | LCD | | Application of group theory to
normal mode of analysis to
ethylene | 2 | Chalk &
Talk | Black
Board | | | Class, conjugate elements- definition, examples, Number of classes and sub-groups Point group introduction, how to arrive at the point group of molecules, Point group and geometry, Examples for various point groups Symmetry number from point groups- matrix representation of symmetry operations Reducible and Irreducible representation – Statement and Consequences of the Great orthogonality theorem, Introduction to Character table Construction of character table for C _{2V} , C _{3V} point groups Construction of character table for D _{3h} and C ₄ point groups Group Theory - II Application of group theory to spectroscopy and molecular problems- Introduction Symmetries of Normal modes of vibration- Application of group theory to normal mode of analysis to Water, Application of group theory to normal mode of analysis to ammonia | with examples, Sub-groups 2 Class, conjugate elements-definition, examples, Number of classes and sub-groups Point group introduction, how to arrive at the point group of molecules, Point group and geometry, Examples for various point groups Symmetry number from point groups- matrix representation of symmetry operations Reducible and Irreducible representation – Statement and Consequences of the Great orthogonality theorem, Introduction to Character table Construction of character table for C_{2V} , C_{3V} point groups Construction of character table for D_{3h} and C_4 point groups Construction of group theory to spectroscopy and molecular problems- Introduction Symmetries of Normal modes of vibration- Application of group theory to normal mode of analysis to Water, Application of group theory to normal mode of analysis to ammonia Application of group theory to normal mode of analysis to ammonia | with examples, Sub-groups Class, conjugate elements-definition, examples, Number of classes and sub-groups Point group introduction, how to arrive at the point group of molecules, Point group and geometry, Examples for various point groups Symmetry number from point groups- matrix representation of symmetry operations Reducible and Irreducible representation - Statement and Consequences of the Great orthogonality theorem, Introduction to Character table Construction of character table for C ₂ v, C ₃ v point groups Construction of character table for D ₃ h and C ₄ point groups Croup Theory - II Application of group theory to spectroscopy and molecular problems- Introduction Symmetries of Normal modes of vibration- Application of group theory to normal mode of analysis to ammonia Application of group theory to normal mode of analysis to 2 Chalk & Talk | | 2.5 | Application of group theory to
normal mode of analysis to
molecules having i and Pauli's
mutual exclusion principle | 2 | Discussion | LCD | | | | |--------------------------|---|---|-----------------|-----------------|--|--|--| | 2.6 | Symmetry integrals- Applications
for spectral selection Rules of
vibration spectra- IR and Raman
fundamentals | | Lecture | Black
Board | | | | | 2.7 | Selection rules for electronic transitions | 3 | Lecture | Black
Board | | | | | 2.8 | Application of group theory to
find out the allowed and
forbidden transitions of HCHO
and Ethylene | 3 | Chalk &
Talk | Black
Board | | | | | UNIT -3 Group Theory III | | | | | | | | | 3.1 | Group theory and Quantum mechanics, Wave function as a basis for irreducible representation | 3 | Chalk &
Talk | Using
Models | | | | | 3.2 | Using Group theory prediction of hybridisation of molecules with sp ² and sp ³ hybridisation | 2 | Chalk &
Talk | Black
Board | | | | | 3.3 | Derivation of Expressions for sp ²
and sp ³ hybrid orbitals using
group theory | 2 | Chalk &
Talk | Black
Board | | | | | 3.4 | Use of Group theory in HMO and HMO calculations, Huckel's appromiations and advantage of using group theory in HMO rtheory | 2 | Chalk &
Talk | Black
Board | | | | | 3.5 | Application of HMO theory to
Ethylene molecule to calculate
Delocalisation energy and derive
expressions for HMO functions | 3 | Lecture | Black
Board | | | | | 3.6 | Application of HMO theory to 1,3-
butadiene molecule to calculate
Delocalisation energy and derive
expressions for HMO functions | 3 | Lecture | Black
Board | |---------|---|---------|-----------------|----------------| | 3.7 | Application of HMO theory to
cyclopropeny system molecule to
calculate Delocalisation energy
and derive expressions for HMO
functions | 2 | Discussion | LCD | | 3.8 | Application of HMO theory to cyclobutadiene molecule to calculate Delocalisation energy and derive expressions for HMO functions | 2 | Chalk &
Talk | Green
Board | | UNIT -4 | Surface Che | emistry | | | | 4.1 | Surface Chemistry- Adsorption-
surface tension, Capillary action,
pressure difference across curved
surface(laplace equations) | 3 | Chalk &
Talk | Black
Board | | 4.2 | Vapour pressure of droplets
(Kelvine equation) Gibbs
adsorbtion isotherm, | 2 | Discussion | LCD | | 4.3 | Derivation of BET isotherm and estimatiom of surface area using BET equation | 2 | Chalk &
Talk | Black
Board | | 4.4 | Surface films on liquids. (Electrokinetic phenomenon), catalytic activity at surfaces. | 2 | Discussion | LCD | | 4.5 | Micells: Surface active agents, Classification of surface active agents, micellipation | 3 | Lecture | Black
Board | | 4.6 | hydrophopic interactions, critical micellarconcentrartion(CMC) , factors affecting the CMC surfactants | 2 | Lecture | Black
Board | | 4.7 | Counter ion binding to micells, thermodynamics of micelliyation | 2 | Chalk &
Talk | Black
Board | |---------|--|--------|-----------------|----------------| | 4.8 | Phase seperation and mass action models, solubilazation, micro emulsion reverse micells. | 2 | Discussion | LCD | | UNIT -5 | Macromole | ecules | | | | 5.1 | Macromolecules- Introduction to
Polymers, Types of polymers with
examples | 3 | Chalk &
Talk | Black
Board | | 5.2 | Kinetics of polymerization Vinyl polymerization | 2 | Lecture | Black
Board | | 5.3 | Kinetics of polymerization cationic and anionic polymerization | 3 | Chalk &
Talk | Black
Board | | 5.4 | Electrically conducting polymers-
Introduction and examples | 2 | Chalk &
Talk | Black
Board | | 5.5 | Fire resistant and liquid crystal polymers, Molecular mass, number and mass average molecular mass, | 3 | Chalk &
Talk | Black
Board | | 5.6 | molecular mass determination (viscometer, light scattering | 2 | Discussion | LCD | | 5.7 | molecular mass determination using sedimentation velocity and equilibrium methods. | 2 | Discussion | LCD | | 5.8 | Chain configuration of macro molecules, calculation of various dimensions of various chain structures. | 2 | Lecture | Black
Board | | Levels | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks C5 | CIA
Total | % of
Assess | |--------|------------------|-----------|------------------|----------------|------------------------------|-------------------------------|--------------|----------------| | | Better of W1, W2 | M1+M
2 | Mid-
Sem.Test | Once in a Sem. | | | | ment | | | 5 | 5+5=10 | 15 | 5 | | | 40 | | | K1 | - | - | - | - | - | | - | - | |
K2 | - | 2 | 3 | - | 5 | | 5 | 12.5 % | | Кз | 5 | 3 | 4 | - | 12 | | 12 | 30 % | | K4 | - | 5 | 4 | - | 9 | | 9 | 22.5% | | K5 | - | | 4 | 5 | 9 | | 9 | 22.5 % | | Non- | | | | | | | | | | Scho. | | | | | | | 5 | 12.5 % | | Total | 5 | 10 | 15 | 5 | 35 | 5 | 40
mks. | 100 % | CIA Scholastic 35 Non Scholastic 5 40 ✓All the course outcomes are to be assessed in the various CIA components. \checkmark The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : K2-Understand, K3-Apply, K4-Analyse, K5 - Evaluate # **EVALUATION PATTERN** | | SCHOLASTIC NON - SCHOLASTIC | | | | | MARKS | | |----|-----------------------------|----|----|----------------|---------|-------|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA ESE | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 – Best of Two Weekly Tests **C2** – Average of Two Monthly Tests C3 - Mid Sem Test C4 - Seminar (Once in a Sem.) C5 - Non - Scholastic # **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSE
D | |------|---|--|---------------------------| | CO 1 | Explain symmetry elements and symmetry operations, analyze the point groups of molecules and construct character table | K2 , K3, K4&
K5 | PSO1, PSO2,
PSO4& PSO6 | | CO 2 | Classify the infrared-active and
Raman active vibrational modes and
list out the allowed and forbidden
electronic transitions group
theoretically and determine the
normal modes | K2 , K3, K4&
K5 | PSO1, PSO2,
PSO4 &PSO6 | | СОЗ | Find out SALC's, apply group theory to find out the hybridization of given molecules and determine delocalization energyof Ethylene and some conjugated systems using HMO theory | K2 , K3, K4&
K5 | PSO1, PSO2,
PSO4&PSO6 | |------|--|--------------------|--| | CO 4 | Define surface tension, Capillary
action, Classify of surface active
agents, and to derive Gibbs
adsorption and BET isotherms | K2 , K3, K4&
K5 | PSO1, PSO2,
PSO3,
PSO6& PSO7 | | CO 5 | To explain the kinetics of vinyl, cationic and anionic polymerizations and determine the mass of polymers. | K2, K3 & K4 | PSO1, PSO2,
PSO4, PSO6,
PSO7& PSO8 | # **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |-----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO ₁ | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO ₂ | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO ₃ | 3 | 3 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO ₄ | 3 | 3 | 3 | 2 | 1 | 3 | 3 | 1 | 1 | | CO ₅ | 3 | 3 | 1 | 3 | 1 | 3 | 3 | 3 | 1 | # **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 2 | 2 | 1 | | CO ₂ | 3 | 2 | 2 | 1 | | CO ₃ | 3 | 2 | 2 | 1 | | CO ₄ | 3 | 2 | 2 | 1 | | CO ₅ | 3 | 3 | 2 | 1 | # ♦ Weakly Correlated -1 # **COURSE DESIGNER:** - 1. Dr.S. Sukumari - 2. Dr. Sr.J.Arul Mary Forwarded By HOD'S Signature B-Tedora. # SEMESTER -III For those who joined in 2019 onwards | PROGRAM | COURSE | COURSE | CATEGO | HRS/WEE | CREDIT | |---------|----------|--------------------|---------------|---------|--------| | ME CODE | CODE | TITLE | RY | K | S | | PSCH | 19PG3C13 | Green
Chemistry | MAJOR
CORE | 6 Hrs. | 5 | # **Course Objectives:** To know eco-friendly methods of synthesis. This helps in planning the synthesis of any type of organic compounds with the revolution of Green Chemistry. #### **Course Outcome:** # After successful completion of the course, the students are able - To know about the alternative feedstock and to study about the process and advantages of alternative materials - To get familiarise about the green chemistry technology - To understand the need of alternative energy sources - To learn different types of renewable energy sources - To acquire knowledge about the greener techniques in industries UNIT I: PRINCIPLES & CONCEPT OF GREEN CHEMISTRY UNIT II: MEASURING AND CONTROLLING ENVIRONMENTAL **PERFORMANCE** UNIT III:EMERGING GREEN TECHNOLOGY AND ALTERNATIVE ENERGY **SOURCES** UNIT IV: RENEWABLE RESOURCES **UNIT V: INDUSTRIAL CASE STUDIES** # UNIT I: PRINCIPLES & CONCEPT OF GREEN CHEMISTRY 18 Hrs Introduction –Concept and Principles-development of Green Chemistry- Atom economy reactions –rearrangement reactions , addition reactions- atom uneconomic-sublimation-elimination-Wittig reactions-toxicity measures- Need of Green Chemistry in our day to day life. #### UNIT II: MEASURING AND CONTROLLING ENVIRONMENTAL PERFORMANCE 18 Hrs Importance of measurement – lactic acid production-safer Gasoline – introduction to life cycle assessment-four stages of Life Cycle Assessment (LCA) – Carbon foot printing-green process Matrics-eco labels -Integrated Pollution and Prevention and Control(IPPC)-REACH (Registration, Evaluation, Authorization of Chemicals) # UNIT III: EMERGING GREEN TECHNOLOGY AND ALTERNATIVE ENERGY SOURCES 18 Hrs Design for Energy efficiency-Photochemical reactions- Advantages-Challenge faced by photochemical process. Microwave technology on Chemistry- Microwave heating –Microwave assisted reactions-Sono chemistry and Green Chemistry – Electrochemical Synthesis-Examples of Electrochemical synthesis. # **UNIT IV: RENEWABLE RESOURCES** **18 Hrs** Biomass –Renewable energy – Fossil fuels-Energy from Biomass-Solar Power-Other forms of renewable energy-Fuel Cells-Alternative economics-Syngas economy-hydrogen economy-Bio refinery chemicals from fatty acids-Polymer from Renewable Resources –Some other natural chemical resources. # UNIT V: GREENER TECHNIQUES IN INDUSTRIES 18 Hrs Methyl Methacrylate (MMA)-Greening of Acetic acid manufacture-Vitamin C-Leather manufacture –Types of Leather –Difference between Hide and Skin-Tanning – Reverse tanning –Vegetable tanning –Chrome tanning-Fat liquoring –Dyeing – Application-Polyethylene- Ziegler Natta Catalysis-Metallocene Catalysis-Eco friendly Pesticides-Insecticides. #### Reference Books: - 1. Mike Lancaster, Green Chemistry and Introductory text, II Edition - 2. P.T.Anastas and J.C Warner, Green Chemistry theory and Practice, Oxford University press, Oxford (1988). - 3. P.Tundoet. al., Green Chemistry, Wiley -Blackwell, London (2007). - 4. Protti D.Dondiet.al., Green Chemistry - 5. T.E Graedel, Streamlined Life cycle Assessment, Prentice Hall, NewJersey (1998). - 6. V.K. Ahluwalia, Methods and Reagents of Green Chemistry: An Introduction by Green Chemistry. # **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | |---------------|---|--------------------|----------------------|-------------------------|--|--|--|--|--| | UNIT - | -1 PRINCIPLES & CO | NCEPT O | F GREEN CH | EMISTRY | | | | | | | 1.1 | Introduction -Concept and
Principles-development of Green
Chemistry | 2 | Chalk &
Talk | Black
Board | | | | | | | 1.2 | Atom economy reactions | 2 | Chalk &
Talk | LCD | | | | | | | 1.3 | Rearrangement reactions | 3 | Lecture | PPT &
White
board | | | | | | | 1.4 | Addition reactions | 3 | Lecture | Smart
Board | | | | | | | 1.5 | Atom uneconomic-subtitution | 2 | Lecture | Black
Board | | | | | | | 1.6 | Elimination-Wittig reactions | 2 | Discussion | Google
classroom | | | | | | | 1.7 | toxicity measures | 2 | Discussion | Google
classroom | | | | | | | 1.8 | Need of Green Chemistry in our day to day life. | 2 | Discussion | Black
Board | | | | | | | Ţ | UNIT -2 MEASURING AND CONTROLLING | | | | | | | | | | | ENVIRONMENTAL PERFORMANCE | | | | | | | | | | 2.1 | Importance of measurement | 2 | Chalk &
Talk | Black
Board | | | | | | | 2.2 | lactic acid production-safer
Gasoline | 2 | Chalk &
Talk | LCD | |--------|--|---|------------------|-------------------------| | 2.3 | introduction to life cycle assessment | 3 | Lecture | PPT &
White
board | | 2.4 | Four stages of Life Cycle
Assessment (LCA) | 3 | Lecture | Smart
Board | | 2.5 | Carbon foot printing-green process Matrics | 2 | Lecture | Black
Board | | 2.6 | Green process Matrics-eco
labels | 2 | Discussion | Google
classroom | | 2.7 | Integrated Pollution and
Prevention and Control(IPPC) | 2 | Discussion | Google
classroom | | 2.8 | REACH (Registration,
Evaluation, Authorization of
Chemicals) | 2 | Discussion | Black
Board | | UNIT - | 3EMERGING GREEN TECHNOLOG
SOURCE | | FERNATIVE | ENERGY | | 3.1 | Design for Energy efficiency-
Photochemical reactions | 2 | Chalk &
Talk | Black
Board | | 3.2 | Advantages-Challenge faced by photochemical process. | 2 | Chalk &
Talk | LCD | | 3.3 | Microwave technology on Chemistry. | 3 | Lecture | PPT &
White
board | | 3.4 | Microwave heating -Microwave assisted reactions. | 3 | Lecture | Smart
Board | | 3.5 | Sono chemistry. | 2 | Lecture | Black
Board | | 3.6 | Green Chemistry | 2 | Discussion | Google
classroom | | 3.7 | Electrochemical Synthesis | 2 | Discussion | Google
classroom | | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------
----------------------|-------------------------| | 3.8 | Examples of Electrochemical synthesis. | 2 | Discussion | Black
Board | | | UNIT -4RENEWABLE | RESOUR | CES | | | 4.1 | Biomass -Renewable energy | 2 | Chalk &
Talk | Black
Board | | 4.2 | Fossil fuels-Energy from
Biomass | 2 | Chalk &
Talk | LCD | | 4.3 | Solar Power- Other forms of renewable energy | 3 | Lecture | PPT &
White
board | | 4.4 | Fuel Cells-Alternative economics | 3 | Lecture | Smart
Board | | 4.5 | Syngas economy- hydrogen economy | 2 | Lecture | Black
Board | | 4.6 | Bio refinery chemicals from fatty acids | 2 | Discussion | Google
classroom | | 4.7 | Polymer from Renewable
Resources | 2 | Discussion | Google
classroom | | 4.8 | Some other natural chemical resources | 2 | Discussion | Black
Board | | | UNIT V: GREENER TECHNIQ | UES IN IN | NDUSTRIES | | | 5.1 | Methyl Methacrylate (MMA)-
Greening of Acetic acid
manufacture | 3 | Chalk &
Talk | Black
Board | | 5.2 | Vitamin C-Leather manufacture | 3 | Chalk &
Talk | LCD | | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | 5.3 | Types of Leather -Difference
between Hide and SkinTanning | 3 | Lecture | PPT &
White
board | | 5.4 | Reverse tanning -Vegetable tanning | 3 | Lecture | Smart
Board | | 5.5 | Chrome tanning-Fat liquoring | 3 | Lecture | Black
Board | | 5.6 | Dyeing -Application | 3 | Discussion | Google
classroom | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | | |-------------------|------------------------------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 1/2 | 5 | | 5 | 12.5
% | | Кз | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | | | | |----------------|----|--|--|--| | Scholastic | 35 | | | | | Non Scholastic | 5 | | | | | | 40 | | | | - ✓ All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for PG are : K1- Remember, K2-Understand, K3-Apply, K4-Analyse , K5 - Evaluate \checkmark The I PG course teachers are requested to start conducting S1, W1, M1, # **EVALUATION PATTERN** | SCHOLASTIC | | | NON –
SCHOLASTIC | | MARKS | | | |------------|----|----|---------------------|----------------|-------|-----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** - Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic # **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|------------------------------| | CO 1 | To know about the alternative feedstock and sustainable development | K2& K3 | PSO1, PSO2,
PSO5 &PSO7 | | CO 2 | To get familiarise about the environmental performance | K2, K3 & K5 | PSO2,
PSO4,PSO5
& PSO8 | | со з | To understand about the various emerging green trends in synthetic chemistry | K2& K3 | PSO1, PSO8
&PSO9 | | CO 4 | To study the importance of renewable and natural chemical resources | K2& K4 | PSO4 &PSO5 | | CO 5 | To learn the different greener techniques used in industries. | K2, K4&K5 | PSO9 | # **Mapping COs Consistency with PSOs** | CO/
PSO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | |------------|------|------|------|------|------|------|------|------|------| | CO1 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | | CO2 | 2 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | | CO3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | CO4 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | | CO5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | # **Mapping of Cos with POs** | CO/ PSO | PO1 | PO2 | РО3 | PO4 | |-----------------|-----|-----|-----|-----| | CO ₁ | 3 | 2 | 2 | 3 | | CO2 | 3 | 2 | 2 | 3 | | CO ₃ | 2 | 3 | 2 | 2 | | CO ₄ | 3 | 1 | 1 | 3 | | CO ₅ | 3 | 3 | 2 | 3 | **Note**: ♦ Strongly Correlated – **3** ♦ Moderately Correlated – **2** ♦ Weakly Correlated -1 # **COURSE TEACHERS** - 1. Dr.A RAJESHWARI - 2. Dr. K. R. SUBIMOL Forwarded By **HOD'S Signature** B-Tedora. #### SEMESTER -III For those who joined in 2019 onwards | PROGR
AMME
CODE | COURSE
CODE | COURSE TITLE | CATEGORY | HRS
/WE
EK | CRED
ITS | |-----------------------|----------------|-----------------------|----------|------------------|-------------| | PSCH | 19PG3CE1 | MATERIAL
CHEMISTRY | ELECTIVE | 4 | 4 | **OBJECTIVE:** This course deals with study of synthesis, properties, structure and applications ofnanoparticles. #### COURSE DESCRIPTION Thispaperdealswithsynthesis, properties and applications of nanomaterials. This paper also provides information about instrumentation techniques for characterising the nanomaterials. #### Course outcome After completion of the course the students should be able: - To gain knowledge about the basic principles of nanochemistry and classification of nanomaterials. - To describe several synthesis of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nanoporous materials, and nanostructured bulk materials, - To criticize the importance of various instrumentation techniques such as NMR, IR, UV, X-ray diffraction, ESR etc., for elucidating the structures of nanomaterials. - To depict the structure of carnonnanoatructures, organic nanopolymers and supra molecular structures - To recognize the important role of nanomaterials in various fields. # **UNITI: BASICSOFNANOMATERIALS** (12 HRS) Introduction – Basic concepts-quantum confinement effect, surfacepropertiesofnanoparticles. Classification of nanomaterials-one dimentional, two dimentional and three dimentional nanostructures. Carbon nanostructures- carbon molecules-carbon nanotubes- nanopolymers-nanocrystals. **Self-study:** supramolecular structures # UNITII: SYNTHETICMETHODS OF NANOMATERIALS (12HRS) Synthesis of semiconductors – sol gel synthesis &sono chemical approach and synthesis of ceramics. synthesis of carbon nanotubes - by carbon arc method and laser ablation method. Synthesis of fullerenes- by Pyrolysis of hydrocarbons, partial combustion of hydrocarbons and arc discharge method. Self-study: Purification carbonna notubes # UNIT III: PROPERTIES OF NANOMATERIALS (12 HRS) Properties of carbonnanotubes, Thermal conductivity, Kinetic property, Electrical and electronic, mechanical and vibrational properties and tensiles trength. Properties of fullerenes- $physical and chemical properties. Metal nanoclusters, \ raregas and molecular clusters.$ Self-study - Properties of semiconducting nanoparticles # UNITIV: CHARACTERIZATION TECHNIQUES (12 HRS) Microscopy, Atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope(TEM), scanning probemicroscope(SPM), scanning tunelling microscope(STM). Spectroscopy-UV-visible spectroscopy, Infra-red spectroscopy, Nuclear magnetic resonance spectroscopy, Raman spectroscopy and Photoelectron spectroscopy. **Self-study:** X-raydiffractiontechnique(XRD). #### Nanosensors: Applications of optical nanosensors, chemical nanosensors, electrochemical nanosensors, micro-electro mechanical sensors and biosensors # Nanocatalyst: ApplicationsOf platinum,palladium,silver,cobaltnanoparticles,CNTs and polymer naomaterials as catalyst. **Nanomedicine:** Nanomaterials in drug delivery, photodynamic therapy, molecular imaging, cancertreatment, molecularmotors, neuro-electronic interfaces and tissue engineering Self-study-Applications of nano devices. #### References - 1. Charles P. Poole, Jr., Frank J. Owens, Introduction tonanotechnology, John Wiley & Sons-India, 2010. - 2. T. Pradeep, Nano: The Essentials, Tata McGraw-Hill PublishingCompanyLimited, 2007. - 3. A.S.Bhatia, Dr.S.M.Ishtiaque, Nanoscience and Carbon Nanotubes, Deep & Deep Publications Pvt. Ltd. - 4. MarkRatner, Daniel Ratner, Nanotechnology, AGentle Introduction To The Next BigIdea, Pearson Education, 5thEdn, 2009. - 5. Dr.S.Shanmugam, Nanotechnology, MJPPublishers, 2010. # **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | |--|--|--------------------|----------------------|-------------------------|--|--|--|--| | UNIT I : BASICS OF NANOMATERIALS | | | | | | | | | | 1.1 | Basic concepts | 2 | Chalk &
Talk | Black
Board | | | | | | 1.2 | surface properties of nanoparticles | 2 | Chalk &
Talk | Black
Board | | | | | | 1.3 | classification of nanomaterials -
one dimentional,twodimentional
and three dimentional
nanostructures | 2 | Chalk
&Talk | Black
Board | | | | | | 1.4 | Carbon nanostructures- carbon molecules | 2 | Chalk &
Talk | PPT &
White
board | | | | | | 1.5 | carbon nanotubes | 2 | Chalk &
Talk | Black
Board | | | | | | 1.6 | Nanopolymers | 1 | Chalk &
Talk | LCD | | | | | | 1.7 |
Nnocrystals | 1 | Chalk &
Talk | Black
Board | | | | | | UNIT II : SYNTHETIC METHODS OF NANOMATERIALS | | | | | | | | | | 2.1 | Synthesis of semiconductors . | 2 | Chalk &
Talk | Black
Board | | | | | | 2.2 | synthesis of ceramics. | 3 | Chalk &
Talk | Black
Board | | | | | | 2.3 | synthesis of carbon nanotubes | 3 | | Chalk &
Talk | PPT &
White
board | | | | |---------------------------------------|---|----|---|-----------------|-------------------------|--|--|--| | 2.4 | Synthesis of fullerenes | 4 | | Chalk &
Talk | Black
Board | | | | | UNIT III :PROPERTIES OF NANOMATERIALS | | | | | | | | | | 3.1 | Properties of carbon nanotubes -Thermal conductivity and Kinetic property | 2 | | Chalk &
Talk | Black
Board | | | | | 3.2 | Elecrical and electronical properties of CNT | 2 | | Chalk &
Talk | Black
Board | | | | | 3.3 | Mechanical properties of CNT | 1 | | Chalk &
Talk | LCD | | | | | 3.4 | Electrical and electronic properties of CNT | 1` | | Chalk &
Talk | Black
Board | | | | | 3.5 | Vibrational properties and tensile strength | 1 | | Chalk &
Talk | Black
Board | | | | | 3.6 | Physical properties of fullerene | 1 | | Chalk &
Talk | Black
Board | | | | | 3.7 | Chemical properties of fullerenes | 2 | | Chalk &
Talk | Black
Board | | | | | 3.8 | Inert gas cluster and rare gas clusters. | 2 | | Chalk &
Talk | Black
Board | | | | | UNITIV: CHARACTERIZATION TECHNIQUES | | | | | | | | | | 4.1 | Microscopy-Atomic force microscope(AFM), scanning electronmicroscope(SEM) | 3 | (| Chalk &
Talk | Black Board | | | | | 4.2 | Transmission electron
microscope(TEM), scanning
probe microscope(SPM),
scanning tunelling microscope
(STM) | 2 | Chalk &
Talk | Black Board | |-----|--|--------|-----------------|-------------------| | 4.3 | Spectroscopy-UV-visible | 2 | Chalk &
Talk | Black Board | | 4.4 | Nuclear magnetic resonance spectroscopy | 1 | Chalk &
Talk | Black Board | | 4.5 | Raman spectroscopy | 1 | Chalk &
Talk | Black Board | | 4.6 | Photo electron spectroscopy. | 1 | Chalk &
Talk | Black Board | | 4.8 | Infra-red spectroscopy, | 2 | Chalk &
Talk | Black Board | | | UNITV : APPLICATIONS OF | ' NANO | MATERIALS | | | 5.1 | Applications of optical nanosensors chemical nanosensors, | 2 | Chalk &
Talk | Black Board | | 5.2 | Electrochemical nanosensors, | 1 | Chalk &
Talk | Black Board | | 5.3 | Biosensors | 1 | Chalk &
Talk | PPT & White board | | 5.4 | micro-electro mechanical sensors, | . 1 | Chalk &
Talk | Black Board | | 5.5 | platinum,palladium,silver,cobalt
nanoparticles as nanocatalyst | 2 | Chalk &
Talk | Black Board | | 5.6 | CNTs and polymeric naomaterials as nanocatalyst | 1 | Chalk &
Talk | Black Board | | 5.7 | Nanomaterials in drug delivery,photodynamic therapy, molecular imaging | 2 | Chalk &
Talk | PPT & White
board | |-----|---|---|-----------------|----------------------| | 5.8 | Cancer
treatment,molecularmotors,neuro-
electronic interfaces and tissue
engineering | 2 | Chalk &
Talk | Black Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | % of
Assessm | |-------------------|---------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|-----------------| | Levels | Seminar | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 1/2 | 5 | | 5 | 12.5 | | | | | | | | | | % | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | К4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic 5 40 - ✓ All the course outcomes are to be assessed in the various CIA components. - √The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K2-**Understand, **K3-**Apply, **K4-**Analyse, **K4-** Evaluate ✓ The I PG course teachers are requested to start conducting S1, W1, M1 ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|----|----|---------------------|-------|-----|-----|-------| | C1 | C2 | С3 | C4 | C5 | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 - Seminar **C2** - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|-------------------| | CO 1 | Distinguish between bulk material and nanomaterials | K2, K3, K4
&K5 | PSO1& PSO2 | | CO 2 | Choose the suitable synythetic methods to prepare particular nanomaterials | K2, K3, K4
&K5 | PSO3 | | CO 3 | Interpret the structure of nanomaterials using various characterisation techniques | K2, K3, K4
&K5 | PSO ₅ | | CO 4 | Catagorize and identify the different types Carbon nano structures | K2, K3, K4
&K5 | PSO4 | | CO 5 | Summarise the uses of nanomaterials in various fields | K2, K3, K4
&K5 | PSO ₅ | ## **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO 7 | PSO
8 | PSO
9 | |-----------------|----------|----------|----------|----------|----------|----------|--------------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO ₄ | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | ## **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | | CO2 | 2 | 3 | 2 | 2 | | CO ₃ | 2 | 2 | 3 | 2 | | CO ₄ | 3 | 2 | 2 | 2 | | CO ₅ | 3 | 2 | 2 | 2 | Note: - ♦ Weakly Correlated -1 ◆ Strongly Correlated - 3 ◆ Moderately Correlated - 2 ## **COURSE DESIGNER:** - 1. Mrs. RM. Nagalakshmi - 2. Dr. **B.SUGANTHAN** A Forwarded $\mathbf{B}\mathbf{y}$ B-Tedora. **HOD'S Signature** # CBCS Curriculum for M.Sc. Chemistry SEMESTER -III ### For those who joined in 2019 onwards | PROGR
AMME
CODE | COURSE
CODE | COURSE TITLE | CATEGORY | HRS
/WE
EK | CRED
ITS | |-----------------------|----------------|------------------------------|----------|------------------|-------------| | PSCH | 19PG3CE2 | BIO-
ORGANIC
CHEMISTRY | ELECTIVE | 4 | 4 | **Objective:** This course deals with Bio-Organic Chemistry, structure of Proteins, biological catalysis and Coenzymes. ### **COURSE OUTCOME** ### After completion of the course the students are able to - Understand concepts of molecular recognition and drug design - Remember the synthesis and structure of Proteins and amino acids. - Know the extraction and purification of enzymes and their application in catalysis. - Categorize and analyze enzyme mechanisms. - Analyze the structure and biological functions of Coenzymes. | UNIT-I -Introduction to Bio-OrganicChemistry | 12Hrs | |--|--------| | UNIT-II - Proteins | 12Hrs | | UNIT -III- Enzymes | 12Hrs | | UNIT -IV- Mechanisms of enzyme action | 12Hrs | | UNIT-V- Coenzymes | 12 Hrs | ### Unit-I Introduction to Bio-OrganicChemistry 12Hrs Introduction to Bio-OrganicChemistry- Chirality and molecular recognition-molecular asymmetry and prochirality -Proximity effect-molecular adaptation-molecular recognition and drug design. Unit-II Proteins 12Hrs Classifications-peptide linkage-primary structure of peptides-C-Terminal aminoacid determination- hydrazinolysis - N-terminal amino acid determination- Edmann method- Synthesis of Peptides-Solid-phase pepdite synthesis- Secondary structure of proteins-Tertiary structure of Proteins- Quaternary structure of proteins- An introduction to biosynthesis of α -aminoacids. Unit-III Enzymes 12Hrs Introduction and historical perspective - chemical and biological catalysis - Remarkable properties of enzymes like catalytic power, specificity and regulation-Nomenclature and classification-Extraction and purification-Fischer's lock and key and Koshland's induced fit hypothesis-concept and identification of active side by the use of inhibitors. ## Unit-IV Mechanism of enzyme action 12Hrs Transition state theory, Orientation and steric effect, acid- base catalysis-Covalent catalysis-Strain and distortion. Example of some typical enzyme mechanisms for chymotrypsin and ribonuclease. ## Unit-V Coenzymes 12Hrs Cofactors as derived from Vitamins, Coenzymes, Prosthetic groups, apo enzymes-Structure and biological functions of CoenzymeA, Thiamine pyrophosphate, Pyridoxal phosphate, NAD⁺, NADP⁺, FMN, FAD, Vitamin B₁₂.Mechanism of reactions catalysed by the above cofactors. #### References: 1. Herman Dugas, (1988), Bioorganic chemistry, Springer-Verlag, 2nd edition. - 2. Herman Dugas and C.Penny, BioorganicOrganic Chemistry, A Chemical approach to enzyme action, Springer-Verlag. - 3. A. L. Lehninger, Principles of Biochemistry, ButterWorth publishers. - 4. E. E. Corn and P.K. Stumpt, Outlines of Biochemistry. - 5. AmbikaShanmugam, Biochemistry for medical students. - 6. Trevor Palmer, Understanding enzymes, Prentice Hall. - 7. Ed. Collin .J. Suckling, Enzyme Chemistry: Impact
and application, Chapman and Hall. - 8. Finar .I.L. Organic Chemistry Volume II. ## **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | |---|--|--------------------|----------------------|-------------------------|--|--|--|--| | UNIT I : INTRODUCTION TO BIO-ORGANICCHEMISTRY | | | | | | | | | | 1.1 | Introduction to Bio-OrganicChemistry | 2 | Chalk &
Talk | Black
Board | | | | | | 1.2 | Chirality | 2 | Chalk &
Talk | Black
Board | | | | | | 1.3 | molecular recognition | 2 | Chalk
&Talk | Black
Board | | | | | | 1.4 | molecular asymmetry and prochirality | 2 | Chalk &
Talk | PPT &
White
board | | | | | | 1.5 | Proximity effect | 2 | Chalk &
Talk | Black
Board | | | | | | 1.6 | molecular adaptation | 1 | Chalk &
Talk | LCD | | | | | | 1.7 | molecular recognition and drug design. | 1 | Chalk &
Talk | Black
Board | | | | | | UNIT-II | PROTEINS | | | | | | | | | 2.1 | Classifications | 2 | Chalk &
Talk | Black
Board | | | | | | peptide linkage-primary structure of peptides | 3 | | Black
Board | | |--|---|--|--|--| | Synthesis of Peptides-Solid-phase pepdite synthesis | 3 | | Chalk &
Talk | PPT &
White
board | | Secondary structure of proteins-Tertiary structure of Proteins- | y 4 | | Chalk &
Talk | Black
Board | | r-III ENZYMES | | | | | | Introduction and historical perspective | 2 | | Chalk &
Talk | Black
Board | | chemical and biological catalysis –. | 2 | | Chalk &
Talk | Black
Board | | Remarkable properties of enzymes like catalytic power, | 1 | | Chalk &
Talk | LCD | | specificity and regulation-
Nomenclature and classification- | 1` | | Chalk &
Talk | Black
Board | | Extraction and purification- | 1 | | Chalk &
Talk | Black
Board | | Fischer's lock and key | 1 | | Chalk &
Talk | Black
Board | | Koshland's induced fit | 2 | | Chalk &
Talk | Black
Board | | hypothesisconcept and identification of active side by the use of inhibitors | 2 | 2 Chalk &
Talk | | Black
Board | | NIT-IV MECHANISM OF ENZYM | IE ACT | ION | | | | Transition state theory | 3 | Chalk & Bl | | Black Board | | Orientation and steric effect | 2 | Chalk &
Talk | | Black Board | | Acid– base catalysis- | | (| Chalk &
Talk | Black Board | | | Synthesis of Peptides-Solid-phase pepdite synthesis Secondary structure of proteins-Tertiary structure of Proteins- T-III ENZYMES Introduction and historical perspective chemical and biological catalysis —. Remarkable properties of enzymes like catalytic power, specificity and regulation-Nomenclature and classification- Extraction and purification- Fischer's lock and key Koshland's induced fit hypothesisconcept and identification of active side by the use of inhibitors NIT-IV MECHANISM OF ENZYM Transition state theory Orientation and steric effect | Synthesis of Peptides-Solid-phase pepdite synthesis Secondary structure of proteins-Tertiary structure of Proteins- T-III ENZYMES Introduction and historical perspective chemical and biological catalysis –. Remarkable properties of enzymes like catalytic power, specificity and regulation- Nomenclature and classification- Extraction and purification- Fischer's lock and key Koshland's induced fit hypothesisconcept and identification of active side by the use of inhibitors NIT-IV MECHANISM OF ENZYME ACT Transition state theory 3 Orientation and steric effect 2 | Synthesis of Peptides-Solid-phase pepdite synthesis Secondary structure of proteins-Tertiary structure of Proteins- T-III ENZYMES Introduction and historical perspective chemical and biological catalysis –. Remarkable properties of enzymes like catalytic power, specificity and regulation- Nomenclature and classification- Extraction and purification- Fischer's lock and key 1 Koshland's induced fit 2 INIT-IV MECHANISM OF ENZYME ACTION Transition state theory 3 Orientation and steric effect 2 | Synthesis of Peptides-Solid-phase pepdite synthesis Secondary structure of proteins-Tertiary structure of Proteins- F-III ENZYMES Introduction and historical perspective Introduction and historical perspective Chalk & Talk Chemical and biological catalysis Chalk & Talk Remarkable properties of enzymes like catalytic power, specificity and regulation-Nomenclature and classification- Extraction and purification- I Chalk & Talk Fischer's lock and key I Chalk & Talk Koshland's induced fit Lypothesisconcept and identification of active side by the use of inhibitors Transition state theory Transition state theory Orientation and steric effect Acid—base catalysis- | | 4.4 | Covalent catalysis | | Chalk &
Talk | Black Board | |-------|--|---|-----------------|-------------------| | | | | | | | 4.5 | Strain and distortion. | | Chalk &
Talk | Black Board | | 4.6 | Example of some typical enzyme mechanisms for chymotrypsin | | Chalk &
Talk | Black Board | | 4.8 | Example of some typical enzyme mechanisms for ribonuclease. | | Chalk &
Talk | Black Board | | UNIT- | V COENZYMES | | | | | 5.1 | Cofactors as derived from Vitamins | 2 | Chalk &
Talk | Black Board | | 5.2 | Coenzymes, Prosthetic groups, | 1 | Chalk &
Talk | Black Board | | 5.3 | Apo enzymes- | 1 | Chalk &
Talk | PPT & White board | | 5.4 | Structure and biological functions of CoenzymeA, Thiamine pyrophosphate, | 1 | Chalk &
Talk | Black Board | | 5.5 | Structure and biological functions of Pyridoxal phosphate, | 2 | Chalk &
Talk | Black Board | | 5.6 | Structure and biological functions of NAD ⁺ , NADP ⁺ | 1 | Chalk &
Talk | Black Board | | 5.7 | Structure and biological functions of FMN, FAD, Vitamin B ₁₂ . | 2 | Chalk &
Talk | PPT & White board | | 5.8 | Mechanism of reactions catalysed by the above cofactors. | 2 | Chalk &
Talk | Black Board | | | C1 | C2 | С3 | C4 | Total
Scholasti
c Marks | Non
Scholasti
c Marks
C5 | CIA
Total | % of | |-------------------|---------|------------------------|--------|---------------------|-------------------------------|-----------------------------------|--------------|----------------| | Levels | Seminar | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | Assess
ment | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks | | | K1 | 5 | ı | 1 | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 1/2 | 5 | | 5 | 12.5
% | | Кз | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic 5 40 - ✓ All the course outcomes are to be assessed in the various CIA components. - √The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K2-**Understand, **K3-**Apply, **K4-**Analyse, **K4-** Evaluate ✓ The I PG course teachers are requested to start conducting S1, W1, M1, ## **EVALUATION PATTERN** | | SCHO | LASTIC | ASTIC NON - SCHOLASTIC | | MARKS | | | |----|------|--------|------------------------|----|-------------|----|-------| | C1 | C2 | С3 | C4 | C5 | CIA ESE Tot | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 - Seminar C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## 1. COURSE OUTCOMES On the successful completion of the course, students will be able to | NO. | COURSE OUTCOMES |
KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|--|--|-------------------| | CO 1 | Understand concepts of molecular recognition and drug design | K2, K3, K4
&K5 | PSO1& PSO2 | | CO 2 | Remember the synthesis and structure of Proteins and amino acids | K2, K3, K4
&K5 | PSO ₃ | | CO 3 | Know the extraction and purification of enzymes and their application in catalysis | K2, K3, K4
&K5 | PSO ₅ | | CO 4 | Categorize and analyze enzyme mechanisms | K2, K3, K4
&K5 | PSO4 | |-----------------|---|-------------------|------| | CO ₅ | Analyze the structure and biological functions of Coenzymes | K2, K3, K4
&K5 | PSO6 | ## **Mapping of Cos with PSOs** | CO/ | PSO |-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | CO ₁ | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | CO2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | CO ₃ | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | | CO ₄ | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | | CO ₅ | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | **Mapping of Cos with POs** | CO/
PSO | PO1 | PO ₂ | PO ₃ | PO ₄ | |-----------------|-----|-----------------|-----------------|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | | CO ₂ | 2 | 3 | 2 | 2 | | CO ₃ | 2 | 2 | 3 | 2 | | CO ₄ | 2 | 2 | 3 | 2 | | CO ₅ | 2 | 3 | 2 | 2 | Note: ♦ Strongly Correlated - $\mathbf{3}$ ♦ Moderately Correlated - $\mathbf{2}$ Weakly Correlated - $\mathbf{1}$ ### **COURSE DESIGNER:** - 1. Dr. ARUL DEEPA - 2. Dr. K.R.SUBIMOL Forwarded By **HOD'S Signature** ## FATIMA COLLEGE (AUTONOMOUS) MADURAI-18 PHYSICAL CHEMISTRY PRACTICALS-I-19PG3C14 (Electrical experiments) SEMESTER -III (For those who joined from 2019 onwards) HRS:6 CREDIT:4 ### **Course Objective:** This course gives lab experience on physical experiments. #### Course outcomes: After completion of the course the students should be able to: - Developed expertise relevant to the professional practice of chemistry - Developed an understanding of the breadth and concepts of physical chemistry - An appreciation of the role of physical chemistry in the chemical sciences and engineering - Developed an understanding of the role of the chemist and chemical engineer in tasks employing physical chemistry - An understanding of methods employed for problem solving in physical chemistry #### PHYSICAL CHEMISTRY EXPERIMENTS - Conductometric Titration of Strong acid with a Strong Base. - Conductometric Titration of Mixture of Strong acid and Weak acid with a Strong Base. - Verification of Ostwald's Dilution law and Determination of Dissociation Constant. - Alkaline Hydrolysis of Ethylacetate by conductometrically. - Determination of the strength of HCl using pH meter. - Determination of strength of HCl and CH₃COOH by pH titration. - Potentiometric Titration of FAS. - Determination of solubility product by Potentiometrically. ### Reference Book B. Viswanathan, P.S. Raghavan, Practical Physical Chemistry, 2005. ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | PSOs ADDRESSED | |-----------------|---|--------------------------------| | CO 1 | Find out the strength of Acids by measuring conductivity | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 2 | Verify Ostwalds dilution law and determine dissociation constant using conductivity values | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 3 | Determine rate constant for Alkaline
Hydrolysis of Ethylacetate by
conductometrically | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 4 | Find out the strength of Acids by measuring pH | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO ₅ | Determine the strength of FAS and solubility product potentiometrically. | PSO1, PSO2, PSO3,
PSO6&PSO7 | ## **Mapping of Cos with PSOs** | CO/
PSO | PSO ₁ | PSO ₂ | PSO ₃ | PSO ₄ | PSO ₅ | PSO6 | PSO ₇ | PSO8 | PSO9 | |-----------------|------------------|------------------|------------------|------------------|------------------|------|------------------|------|------| | CO ₁ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₂ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | ## **Mapping of Cos with POs** | CO/ PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 3 | 2 | 1 | | CO2 | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 2 | 1 | **Note**: ♦ Strongly Correlated – **3** ♦ Moderately Correlated – 2 ♦ Weakly Correlated -1 ### **COURSE DESIGNER:** 1. Dr. B.MEDONA 2. Dr. S.SUKUMARI B-Tedora. Forwarded By **HOD'S Signature** ### SEMESTER -IV ### (those who joined in 2019 onwards) | PROGRAM | COURSE | COURSE TITLE | CATEGO | HRS/ | CREDIT | |---------|--------------|--|---------------|--------|--------| | ME CODE | CODE | | RY | WEEK | S | | PSCH | 19PG4C
15 | INORGANIC CHEMISTRY-III (Organometallics & Bio-inorganic chemistry) | MAJOR
CORE | 6 Hrs. | 5 | ### **Objective:** Thispaperdealswithpreparation, reactions and structure of Organometal liccompounds. This paper also provides information about organometallic catalysts and basic concepts and structures of minerals and vitamins. #### **Course Outcome:** After completion of the course the students should be able to: - Illustrate the structure and mode of bonding in organometallic complexes - Apply the different electron counting procedures to predict the shape and stability of organometallic complexes - Illustrate the mechanism of dioxygen binding in various oxygen carrier proteins - Classify and identify the different types of metalloenzymes and metallo proteins based on their biological functions. - Interpret the structure of borazines, boranes and carboranes. ### UNIT-I:ORGANOMETALLICCHEMISTRY-I 18Hrs UNIT-II:ORGANOMETALLICCHEMISTRY-II 18 Hrs UNIT-III:BASICCONCEPTSFORBIO-INORGANICCHEMISTRY-I 18 Hrs UNIT-IV:BASICCONCEPTSFORBIO-INORGANICCHEMISTRY-II 18 Hrs UNIT-V;INORGANICCHAINS,RINGSANDCAGES. 18Hrs ### UNIT-IORGANOMETALLICCHEMISTRY-I 18Hrs Introduction,16 and 18electron rule,Metal carbonyl complexes, polynuclear carbonylcomplexes carbonyl hydride complexes,carbonylate anionic complexes, nitrosyl complexes,carbinecomplexes,non-aromaticalkenecomplexes,allylandpentadienylcomplexes.Metallocenes—Synthesis,strucutreandreactivity. **Selfstudy:**carbyne complexes,non-aromaticalkynecomplexes, ### UNIT-IIORGANOMETALLICCHEMISTRY-II 18Hrs Reactions of organometal liccompounds, Substitutionreactionsincarbonylcomplexes, oxidative addition and reductive elimination, carbonyl insertion, methyl migrational keneinsertion and β -elimination. Catalysis by organometal liccompounds-alkene hydrogenation, hydroformylation, Monsanto acetic acid process, Waker's process, synthetic gasoline-Fischer-Tropsch process. **Selfstudy:** synthetic gas and Ziegler-Natta catalysis. ### UNIT-IIIBASICCONCEPTSFORBIO-INORGANICCHEMISTRY-I 18Hrs Essential elements in biology-the role of model system-the alkali and alkaline earthmetals-sodium, potassium, calcium & magnesium-metallophorphyrins-chlorophyll-hemeproteins-hemoglobin and myoglobin-Hill constant, cooperativity effect and Bohr effect, hemoglobin modeling-other heme protiens-cytochromes-peroxidases and catalases. Self study: Triggering effect, carbommonoxide and cyanide poisoning. ### UNIT-IV BASICCONCEPTSFORBIO-INORGANICCHEMISTRY-II 18Hrs Iron-sulphur proteins, Ruberdoxins, Ferredoxins-Hemerythrin-Iron supply and transport-Vitamine B12, metalloenzymes-zinc metalloenzymes, carbonic anhydrase-copper metalloenzymes, ascorbic acid oxidase- blue copper proteins and biological nitrogen fixation. Self study:biological role of carboxy peptidase enzyme, nitrogen cycle ### UNIT-V INORGANICCHAINS, RINGSANDCAGES. 18Hrs Chains, Catenation, intercalation chemistry. Rings-Borazine, Phosphazene, Phosphazenepolymers, Sulphur –Nitrogen ring systems, one dimensional conductors. Cages Phosphorus cagecompounds, Boron cage compounds. Boranes-Preparation, properties, structure and bonding indiborane, Wades rule and Styxnumbers. Carboranes and metallocarboranes. **Self study:** heterocatenation, silicateminerals and bonding intetraboranes, #### **TextBooks** - 1. James.E.Huheey, Inorganic Chemistry, Pearson publications, 4thedition, 2008. - 2. Asim K.Das, Bioinorganic chemistry, Books & Allied (P) Ltd'2007 ### **Reference Books** - F.A.Cotton, G.Wilkinson, C.A. Murillo and M.Bochmann, Advanced Inorganic Chemistry; GeofreyWilinson &Carlos,6thEdition'2003 - 2. K.F.Purcell and J.C.Kotz, Inorganic Chemistry;Melbourne,Cenage learning'2010.3.J.D.Lee,ConciseInorganicChemistry,Oxford Black willScience,5thEdition,2005. ## **CONTENTS & LECTURE SCHEDULE:** | Module
No. | Торіс | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|--|--------------------|----------------------|-------------------------| | | -I | | | | | 1.1 | Introduction, 16 and 18 electron rule | 2 | Chalk &
Talk | Black
Board | | 1.2 | Metal carbonyl complexes,
polynuclear carbonyl complexes,
Anionic carbonyl complexes | 3 | Chalk &
Talk | Black
Board | | 1.3 | carbonyl hydrides, Nitrosyl complexes, | 2 | Chalk &
Talk | Black
Board | | 1.4 | Carbene and Carbyne complexes, | 3 | Chalk &
Talk | PPT &
White
board | | 1.5 | Non Aromatic Alkene and
Alkyne complexes | 2 | Chalk &
Talk | Black
Board | | 1.6 | Allyl and pentadienyl complexes | 2 | Chalk &
Talk | Black
Board | | 1.7 |
Metallocenes - Synthesis | 2 | Chalk &
Talk | PPT &
White
board | | 1.8 | Strucutre and reactivity of
Metallocenes | 2 | Chalk &
Talk | Black
Board | | UNIT - | - 2 TITLE -ORGANOMETA | LLICCHE | MISTRY-II | | | 2.1 | Reactions of organometallic compounds | 2 | Chalk &
Talk | Black
Board | | 2.2 | Substitution reactions in carbonyl complexes, | 2 | Chalk &
Talk | Black
Board | | 2.3 | Oxidative Addition and
Reductive Elimination | 2 | Chalk &
Talk | Black
Board | | | T | | | | |---------|---|-----------|-----------------|-------------------------| | 2.4 | Insertion and Elimination reactions | 3 | Chalk &
Talk | Black
Board | | 2.5 | catalysis by organometallic compounds | 2 | Chalk &
Talk | PPT &
White
board | | 2.6 | Alkene hydrogenation, synthetic gas | 2 | Chalk &
Talk | Black
Board | | 2.7 | Hydroformylation, Monsanto
Acetic Acid process, The Waker
process, Synthetic gasoline | 3 | Chalk &
Talk | Black
Board | | 2.8 | Fischer Tropsch process,
Ziegler-Natta catalysis. | 2 | Chalk &
Talk | Black
Board | | UNIT - | 3 TITLE -BASIC CONCEPTS FO | R BIO-INC | ORGANIC CH | IEMISTY-I | | 3.1 | Essential elements in biology-
the role of model system | 2 | Chalk &
Talk | Black
Board | | 3.2 | The alkali and alkaline earth
metals
sodium,potassium,calcium | 2 | Chalk &
Talk | LCD | | 3.3 | magnesium-metalophorphyrins | 2 | Chalk &
Talk | Black
Board | | 3.4 | Chlorophyll | 2 | Chalk &
Talk | Black
Board | | 3.5 | Hemeproteins-hemoglobin, myoglobin- | 2 | Chalk &
Talk | Black
Board | | 3.6 | Hill constant, cooperativity effect
and Bohr
effectHemoglobinmodeling | 3 | Chalk &
Talk | Black
Board | | 3.7 | Hemeprotiens | 3 | Chalk &
Talk | Black
Board | | 3.8 | cytochromes-peroxidases and catalases. | 2 | Chalk &
Talk | Black
Board | | UNIT -4 | TITLE-BASIC CONCEPTS FOR | BIO-INOR | GANIC CHE | EMISTY-II | | 4.1 | Iron-sulphur proteins | 2 | C | halk & Talk | Black Board | |--------|---|--------|--------------|-----------------|-------------| | 4.2 | Ruberdoxins, Ferridoxins | 3 | C | halk & Talk | Black Board | | 4.3 | Hemerythrins | 2 | C | halk & Talk | Black Board | | 4.4 | Iron supply and transport | 3 | C | halk & Talk | Black Board | | 4.5 | Vitamine B12 | 2 | C | halk & Talk | Black Board | | 4.6 | metalloenzymes-zinc
metalloenzymes,carbonic
anhydrase | 2 | C | halk & Talk | Black Board | | 4.7 | copper metallo enzymes, ascorbic acid oxidase | 2 | C | halk & Talk | Black Board | | 4.8 | blue copper proteinsand
biological Nitrogen fixation | 2 | Chalk & Talk | | Black Board | | UNIT - | 5 TITLE -INORGANIC CI | HAINS, | RIN | NGS AND CA | AGES | | 5.1 | Chains - Catenation | 2 | | Chalk &
Talk | Black Board | | 5.2 | Heterocatenation, Silicate minerals | 2 | | Chalk &
Talk | LCD | | 5.3 | Intercalation Chemistry,
Rings-
Borazines,Phosphazenes | 2 | | Chalk &
Talk | Black Board | | 5.4 | Phosphazene polymers,
Sulphur - Nitrogen ring
systems, One dimensional
Conductors, | 3 | | Chalk &
Talk | Black Board | | 5.5 | Cages -Phosphorus cage compounds | 2 | | Chalk &
Talk | Black Board | | 5.6 | Boron cage compounds-
Boranes-Preparation, | 2 | | Chalk &
Talk | Black Board | | 5.7 | properties, structure and
Bonding in Diborane and
TetraBoranes, | 2 | | Chalk &
Talk | Black Board | | 5.8 | Wades rule, and numbers, Carboranes Metallocarboranes. | Styx
and | 3 | Chalk &
Talk | Black Board | | |-----|--|-------------|---|-----------------|-------------|--| |-----|--|-------------|---|-----------------|-------------|--| | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | % of
Assessm | |-------------------|---------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|-----------------| | Levels | Seminar | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 1/2 | 5 | | 5 | 12.5
% | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic 5 40 - ✓ All the course outcomes are to be assessed in the various CIA components. - √The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : K2-Understand, K3-Apply, K4-Analyse, K4- Evaluate ✓ The I PG course teachers are requested to start conducting S1, W1, M1, ### **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | | MARKS | | | |------------|----|----|---------------------|----------------|--------------|--|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA ESE Tota | | Total | | 5 | 10 | 15 | 5 | 5 | 40 60 10 | | 100 | **C1** - Average of Two Session Wise Tests **C2** - Average of Two Monthly Tests C₃ - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |-----------------|--|--|-------------------| | CO 1 | Illustrate the structure and mode of bonding in organometallic complexes | K2,K3,K4&K5 | PSO6& PSO7 | | CO 2 | Apply the different electron counting procedures to predict the shape and stability of organometallic complexes | K2,K3,K4&K5 | PSO6& PSO7 | | CO 3 | Illustrate the mechanism of
dioxygen binding in various oxygen
carrier proteins | K2,K3,K4&K5 | PSO6& PSO9 | | CO 4 | Classify and identify the different
types of metalloenzymes and metallo
proteins based on their biological
functions. | K2,K3,K4&K5 | PSO4& PSO5 | | CO ₅ | Interpret the structure of borazines, boranes and carboranes. | K2,K3,K4&K5 | PSO2& PSO7 | ## **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO 2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO 7 | PSO
8 | PSO
9 | |-----------------|----------|-------|----------|----------|----------|----------|--------------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 3 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | | CO ₄ | 3 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | ## **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 3 | 1 | 2 | | CO ₂ | 3 | 2 | 3 | 2 | | CO ₃ | 3 | 2 | 2 | 2 | | CO ₄ | 3 | 2 | 1 | 2 | | CO ₅ | 3 | 2 | 3 | 2 | **Note:** ◆ Strongly Correlated - **3** ◆ Moderately Correlated -2 ♦ Weakly Correlated -1 ### **COURSE DESIGNER:** - 1. Mrs.RM.Nagalakshmi - 2. Dr. Subimol Forwarded By **HOD'S Signature & Name** ### SEMESTER -IV ## For those who joined in 2019 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGO
RY | HRS/WE
EK | CREDITS | |-----------------------|----------------|---|---------------|--------------|---------| | PSCH | 19PG4C16 | ORGANIC CHEMISTRY-IV (RETROSYNTHESIS, REACTIONS AND REAGENTS, NATURAL PRODUCTS) | MAJOR
CORE | 6 Hrs. | 5 | **Objective:** This paper deals with types of Carbon-Carbon bond forming reactions, introduction to organic synthesis, preparation and synthetic applications of some organic reagents used for synthesis, structural elucidation of few alkaloids, terpenoids, steroids and nucleic acids. This paper also deals with disconnection approach for synthesis. #### Course outcome: After completion of the course the students should be able to: - To differentiate the carbon –carbon bond forming reactions and to interpret the products and to explore reactivity patterns of various coupling reactions - To elucidate the structural units of quinine, morphine, □-pinene and □-codinene - To correlate the skeletal units of nucleotides and nucleosides- RNA and - To categorize the reducing and oxidizing agents and its applications. - To Sketch the effective and logical synthetic route for the synthesis of new molecules | Unit I | Introduction to organic synthesis | 18 Hrs | |----------|-----------------------------------|--------| | Unit II | Reagents in organic synthesis | 18 Hrs | | Unit III | Retrosynthesis | 18 Hrs | | Unit IV | Steroids and nucleic acids | 18 Hrs | | Unit V | Alkaloids and Terpenes | 18 Hrs | ## Unit I: Introduction to organic synthesis 18 Hrs Carbon-carbon bond forming reactions using Grignard synthesis, Aldol condensation, Michael addition, Wittig reaction, Diels-alder reaction, Suzuki, Still and Heck coupling. Functional group modifications. Linear and convergent synthesis-stereoselectivity (Enantio and diastereoselectivity), chemoselectivity, regioselectivity, protecting groups. ### Unit II : Reagents in organic synthesis 18 Hrs Use of the following reagents in organic synthesis and functional group transformation: Lithium dialkyl cuprate, lithium diisopropyl amide (LDA), dicyclohexylcarbodiimide (DCC), 1,3-dithiane, osmium tetroxide, dichloro dicyano benzoquinone (DDQ), phase-transfer catalyst (PTC), SeO₂, crown ethers. ### Unit III: Retrosynthesis 18 Hrs Synthons and types- synthetic equivalent- target
molecule- functional group interconversions- antithesis- Retrosynthesis of achiral open chain molecules and cyclic target molecules, one group and two group C-X disconnections and synthetic strategies- guidelines to a good disconnection, 1,2- 1,3- 1,4- 1,5- and 1,6- diffunctional disconnections- retrosynthetic analysis of Z-Heneicos-6-en-11-one and Z-jasmone ### Unit IV: Steroids and nucleic acids **18 Hrs** - (a) Steroids: Structural elucidation (including synthesis) of cholesterol, androsterone and oestrone. - (b) Nucleic acids- structure, nucleotides and nucleosides- RNA, Types of RNA- DNA, structure, replication of DNA. ### Unit V : Alkaloids and Terpenes **18 Hrs** Structural elucidation (including synthesis) of quinine and morphine ### **Terpenes** Structural elucidation (including synthesis) of $\alpha\text{-pinene}$ and $\alpha\text{-}$ codinene #### References - 1. S. Warren, Organic synthesis: The disconnection approach, John Wiley & Sons, Inc., 1992. - 2. S. Warren, Designing Organic Syntheses: A Programmed Introduction to the Synthon Approach, John Wiley & Sons, Inc., 1978. - 3. J-H. Fuhrhop, and G. Penzlin, Organic Synthesis: Concepts, Methods, Starting Materials, Verlag Chemie, Weinheim, 1983. - 4. J. M. Coxon and B. Halton, Organic Photochemistry, Cambridge University Press, 2nd ed. 1987. - 5. C. H. DePuy and O. L. Chapman, Molecular reactions and photochemistry, Tata-McGraw Hill, 1975. - 6. S. Mukergi, Pericyclic reactions, Macmillan, India. - 7. I. Fleming, Pericyclic reactions, Oxford university press, 1998. - 8. F. A. Carey and R. J. Sundberg, Advanced organic chemistry, Part A: Structure and Mechanism, Plenum press, 3th Ed., 1990. - 9. F. A. Carey and R. J. Sundberg, Advanced organic chemistry, Part B: Reactions and synthesis, Plenum press, 3th Ed., 1990. - 10. R. B. Woodward and R. Hoffmann, The concervation of orbital symmetry, Academic press, 1970. - 11. I. L. Finar, Organic chemistry, Volume II, ELBS, 5th Ed. 1975. ### **COURSE CONTENTS & LECTURE SCHEDULE:** | Modul
e No. | Торіс | No. of
Lecture
s | Teaching
Pedagogy | Teaching
Aids | |----------------|---|------------------------|----------------------|------------------| | | UNIT -1 INTRODUCTIO | N TO ORG | SANIC SYNT | HESIS | | 1.1 | Carbon-carbon bond forming reactions - introduction | 1 | Chalk &
Talk | Black
Board | | 1.2 | Grignard synthesis, Aldol condensation | 2 | Chalk &
Talk | LCD | | 1.3 | Michael addition, Wittig
reaction, Diels-alder reaction | 3 | Lecture | PPT &
White
board | |--------|---|-------|-----------------|-------------------------| | 1.4 | Suzuki,Still and Heck coupling | 3 | Lecture | Smart
Board | | 1.5 | Functional group modifications | 2 | Lecture | Black
Board | | 1.6 | Linear and convergent synthesis | 2 | Discussio
n | LCD | | 1.7 | stereoselectivity(Enantio and diastereoselectivity), chemoselectivity, regioselectivity | 3 | Lecture | Smart
Board | | 1.8 | Protecting groups | 2 | Discussio
n | Black
Board | | UNIT - | II REAGENTS IN ORGANIC SYNT | HESIS | (18 | 3 HRS.) | | | | | | | | 2.1 | functional group transformation- introdcudtion | 2 | Chalk &
Talk | Black
Board | | 2.2 | Lithium dialkylcuprate | 2 | Chalk &
Talk | Black
Board | | 2.3 | lithium diisopropyl amide | 2 | Chalk &
Talk | Black
Board | | 2.4 | dicyclohexylcarbodiimide | 2 | Chalk &
Talk | PPT | | 2.5 | 1,3-dithiane, osmium tetroxide | 3 | Chalk &
Talk | LCD | | 2.6 | dichlorodicyano benzoquinone | 2 | Lecture | Black
Board | | 2.7 | phase-transfer catalyst (PTC) | 2 | Lecture | Black
Board | | 2.8 | SeO ₂ , & crown ethers | 3 | Chalk &
Talk | Black
Board | | UNIT- | III RETROSYNTHESIS | | | (18 HRS.) | |--------|---|----|-----------------|----------------| | 3.1 | Synthons and types- synthetic equivalent | 2 | Chalk &
Talk | Green
Board | | 3.2 | Target molecule- functional group interconversions-antithesis | 2 | Discussio
n | LCD | | 3.3 | Guidelines to a good disconnection | 2 | Chalk &
Talk | Black
Board | | 3.4 | Retrosynthesis of achiral open chain molecules | 1 | Discussio
n | LCD | | 3.5 | One group C-X disconnections | 1 | Lecture | Black
Board | | 3.6 | Two group C-X disconnections | 1 | Lecture | Black
Board | | 3.7 | Retrosynthesis of cyclic target molecules | 2 | Chalk &
Talk | Black
Board | | 3.8 | 1,2-1,3-1,4-1,5- and 1,6- C_C
difunctional disconnections | 4 | Chalk &
Talk | Green
Board | | 3.9 | Retrosynthetic analysis of Z-
Heneicos-6-en-11-one and Z-
jasmone | 3 | Chalk &
Talk | Green
Board | | UNIT - | IV STEROIDS AND NUCLEIC ACI | DS | | (18 HRS.) | | 4.1 | Structural elucidation of cholesterol | 3 | Chalk &
Talk | Black
Board | | 4.2 | Structural elucidation of androsterone | 3 | Chalk &
Talk | Black
Board | | 4.3 | Structural elucidation of oestrone | 3 | Chalk &
Talk | Black
Board | | 4.4 | Nucleic acids- structure | 2 | Discussio
n | LCD | | 4.5 | nucleotides and nucleosides | 3 | Lecture | Black
Board | |--------|---|---|-----------------|----------------| | 4.6 | RNA, Types of RNA- | 2 | Lecture | Black
Board | | 4.7 | DNA, structure, replication of DNA. | 2 | Chalk &
Talk | Black
Board | | UNIT - | V ALKALOIDS AND TERPENES | | (1 | 18 HRS.) | | 5.1 | Introduction to alkaloids and terpenes | 2 | Chalk &
Talk | Black
Board | | 5.2 | Structural elucidation of quinine | 4 | Chalk &
Talk | Black
Board | | 5.3 | Structural elucidation of morphine | 5 | Chalk &
Talk | Black
Board | | 5.4 | Structural elucidation of \langle -pinene | 4 | Chalk &
Talk | Black
Board | | 5.5 | Structural elucidation of 〈-codinene | 3 | Chalk &
Talk | Black
Board | | | C1 | C2 | С3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | 0, 6 | |--------|------------------------------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Session -
wise
Average | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | |-------------------|---|---|----|----|----|---|----|--------| | Non
Scholastic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | CIA Scholastic 35 Non Scholastic 5 40 - ✓All the course outcomes are to be assessed in the various CIA components. - ✓ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are : **K1-** Remember, **K2-**Understand, **K3-**Apply, **K4-**Analyse ## **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|----|----|---------------------|----------------|---------|----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA ESE | | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** - Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests **C5** - Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSE
D | |------|---|--|-----------------------| | CO 1 | To differentiate the carbon -carbon bond forming reactions and to interpret the products and to explore reactivity patterns of various coupling reactions | K2,K3,K4 &K5 | PSO1& PSO2 | | CO 2 | To categorize the reducing and oxidizing agents and its applications. | K2,K3,K4
&K5 | PSO6 &PSO7 | | соз | To Sketch the effective and logical synthetic route for the synthesis of new molecules | K2,K3,K4
&K5 | PSO6 &PSO7 | | CO 4 | To correlate the skeletal units of
nucleotides and nucleosides- RNA
and DNA | K2,K3,K4
&K5 | PSO1&PSO5 | | CO 5 | To elucidate the structural units of quinine, morphine, <-pinene and <-codinene | K2,K3,K4
&K5 | PSO2 &
PSO7 | ## **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO 2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO 7 | PSO
8 | PSO
9 | |-----------------|----------|-------|----------|----------|----------|----------|--------------|----------|----------| | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | | CO2 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₃ | 2 | 2 | 1 | 1 | 3 | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | 1 | |-----------------|---|---|---|---|---|---|---|---|---| | CO ₅ | 2 | 3 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | Mapping of Cos with POs | CO/
PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 2 | 3 | 2 | | CO2 | 3 | 2 | 2 | 2 | | CO ₃ | 3 | 3 | 3 | 3 | | CO ₄ | 3 | 2 | 3 | 2 | | CO ₅ | 3 | 3 | 2 | 3 | **Note**: Strongly Correlated – **3** ModeratelyCorrelated -2 WeaklyCorrelated -1 ### **COURSE DESIGNER:** Staff Name Dr. M. Priyadharsani Staff Name Dr.B.Vinosha Forwarded By **HOD'S Signature** # CBCS Curriculum for Chemistry SEMESTER -IV ### For those who joined in 2022 onwards | PROGRAM
ME CODE | COURSE
CODE | COURSE TITLE | CATEGORY | HRS/W
EEK | CREDITS | |--------------------|----------------|---
------------|--------------|---------| | PSCH | 19PG4C17 | Physical chemistry-1V (Spectroscopy, Kinetic theory of Gases, Photochemistry and Radiation chemistry) | MAJOR CORE | 6Hrs. | 5 | **Objective**: This paper deals with many spectroscopic techniques like Microwave, IR, Raman and Photoelectron spectroscopies. This paper also deals with NQR and ESR. #### Course outcome After successful completion of the course, students will be able to - Describe the structure and mode of bonding in organometallic complexes containing carbonyls, nitrosyls, carbenes, carbynes, alkenes, alkynes and also metallocene complexes - Apply different electron counting procedures to predict the shape and stability of organometallic complexes - Illustrate the mechanism of dioxygen binding in various oxygen carrier proteins - Classify different types of metalloenzymes and metallo proteins based on their biological functions. - Distinguish whether the given compound belongs to chain or ring or cage or cluster UNIT-I 18hrs ## Spectroscopy-I Absorption and emission of EMR -LASER-Introduction of emr with matter-einstein coefficients, Microwave, IR and raman spectroscopy of diatomic molecules determination of molecular parameters-Vibrational spectra of polyatomic molecules-IR and raman active modes- overtone and combination bands-fermi resonance-Group frequencies and coupling interaction. UNIT-II 18hrs #### Spectroscopy-II Electronic spectra of diatomic molecules-molecular Quantum numbers-dissociation energy calculations- BrigeSpener extrapolation technique- fortrat diagram-predissociationspectra of the electronic states of polyatomic molecules- absorption of light-oscillator strength- charge transfer spectra. Photoelectron Spectroscopy- basic principles- spectrum, UV and X-ray (ESCA) photoelectron spectroscopy, vibrational structure PES of Ar and O_2 and N_2 . UNIT-III 18hrs #### Spectroscopy-III ESR spectroscopy- principles of g-factor, experimental methods, spectrum –fine and hyperfine structures- applications. NQR spectroscopy-Quadrapole moment. Coupling constant- quardrapole transitionelectric field gradient and molecular structure. Mossbauer spectroscopy - recoilless emission and resonant absorption-experimental methods. Isomer shifts- quadrapole and magnetic interactions. Applications. References: Spectroscopy by Banwell & Drago UNIT-IV 18hrs #### Kinetic theory of gases Equation of state -molecular speeds-distribution of molecular velocities- one, two and three dimensions-Maxwell Boltzmann distribution law- Principles of equipartition of energy- rotations and vibrations of molecules- the molecular collisions- mean free path-transport properties-thermal conductivity-viscosity and diffusion of gases. UNIT-V 18hrs Photochemistry and Radiation chemistry Physical properties of the electronically excited molecules-excited state dipole moments excited state pKa, excited state redox potential. Fluorescence, phosphorescence and other deactivation process- Stern –Volmer equation and its applications. Photosensitisation and chemiluminescence experimental techniques in photochemistry-flash photolysis technique. Radiation chemistry- source of high energy- interaction of high energy radiation with matter, radiolysis of water- definition of G value. Primary and secondary process, #### References: - 1) PHYSICAL CHEMISTRY ATKINS - 2) PHYSICAL CHEMISTRY -CASTELLAN - 3) PHYSICAL CHEMISTRY -WALTERJ.MOORE - 4) Photo chemistry -Turo - 5) photochemisty RohatkajiMukerji. #### **COURSE CONTENTS & LECTURE SCHEDULE:** | Module
No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | |---------------|---|--------------------|----------------------|------------------| | | UNIT -I Spectroscopy-I | | | | | 1.1 | Microwave spectroscopy- theory,
spectra of rigid diatomic rotators
,selection rules, determination of bond
length, | 2 | Chalk &
Talk | Black
Board | | 1.2 | spectra of polyatomic molecules | 2 | Chalk &
Talk | Black
Board | | 1.3 | Effect of isotopic substitution | 3 | Chalk &
Talk | Black | | 1.4 | IR spectroscopy – simple harmonic and unharmonic oscillator, selection rules, | 2 | Chalk &
Talk | Black
Board | | 1.5 | spectrum of diatomic vibrating rotator, | 3 | Chalk &
Talk | Black
Board | | 1.6 | Raman spectroscopy, quantum theory of Raman scattering, Classical theory of Raman scattering, | 2 | Chalk &
Talk | Black
Board | |-----|---|----------|-----------------|----------------| | 1.7 | Rotational Raman spectrum of diatomic molecules, IR and Raman active modes-overtone and combination bands | 2 | Chalk &
Talk | Black
Board | | 1.8 | Fermi resonance-Group frequencies and coupling interaction. | 2 | Chalk &
Talk | Black
Board | | | UNIT -2 Spectroscopy- | ·II | | | | 2.1 | Electronic spectra of diatomic molecules | 2 | Chalk &
Talk | Black
Board | | 2.2 | molecular Quantum numbers-
dissociation energy calculations-
Birge Sponer extrapolation
technique. | 4 | Chalk &
Talk | Black
Board | | 2.3 | fortrat diagram-predissociation
spectra of the electronic states of
polyatomic molecules | 2 | Chalk &
Talk | Black
Board | | 2.4 | Absorption of light- oscillator strength. | 1 | Chalk &
Talk | Black
Board | | 2.5 | Photoelectron Spectroscopy- basic principle. | 2 | Chalk &
Talk | Black
Board | | 2.6 | Instrumentation, UV spectroscopy, X-ray (ESCA) photoelectron spectroscopy | 3 | Chalk &
Talk | Black
Board | | 2.7 | Applications of PES | 2 | Chalk &
Talk | Black
Board | | 2.8 | PES of Ar, O2 and N2 | 2 | Chalk &
Talk | Black
Board | | | UNIT -3Spectrose | copy-III | | | | 3.1 | NMR Spectroscopy–Principles and instrumentation- ESR spectroscopy, Principle - Comparison of ESR and NMR | _ | Chalk &
Talk | Black
Board | | | frequencies,g-factor | | | | |-----|---|--------------|-----------------|----------------| | 3.2 | Experimental methods, spectrum- fine and hyperfine structures- applications | 4 | Chalk &
Talk | Black
Board | | 3.3 | NQR spectroscopy-Quadrupole moment. Coupling constant, electric field gradient | 2 | Chalk &
Talk | Black
Board | | 3.4 | Quadrupole transitions of some Nuclei. | 3 | Chalk &
Talk | Black
Board | | 3.5 | molecular structure and Applications | 2 | Chalk &
Talk | Black
Board | | 3.6 | Mossbauer spectroscopy-
Introduction, recoilless emission
and resonant absorption,
experimental methods. | 1 | Chalk &
Talk | Black
Board | | 3.7 | Isomer shifts, Quadrupole Interaction and Zeeman Splitting in Mossbauer spectroscopy | 2 | Chalk &
Talk | Black
Board | | 3.8 | Applications of Mossbauer spectroscopy | 2 | Chalk &
Talk | Black
Board | | | UNIT -4 Kinetic theo | ory of gases | | | | 4.1 | Equation of state –molecular speeds | 2 | Chalk &
Talk | Black
Board | | 4.2 | distribution of molecular velocities- one, two and three | 3 | Chalk & | Black | | | dimensions | | Talk | Board | | 4.3 | Maxwell Boltzmann distribution law- | 2.5 | Chalk
&Talk | Black
Board | | 4.4 | Principles of equipartition of energy | 2.5 | Chalk &
Talk | Black
Board | | 4.5 | - rotations and vibrations of molecules | 2 | Chalk &
Talk | Black
Board | | 4.6 | the molecular collisions- mean free path | 2 | Chalk &
Talk | Black
Board | | 4.7 | transport properties-thermal conductivity | 2 | Chalk &
Talk | Black
Board | |-----|--|--------------|-----------------|----------------| | 4.8 | viscosity and diffusion of gases. | 2 | Chalk &
Talk | Black
Board | | | UNIT -5 Photochemistry and | Radiation of | chemistry | | | 5.1 | Physical properties of the electronically excited molecules | 2 | Chalk &
Talk | Black
Board | | 5.2 | excited state dipole moments excited state pKa, excited state redox potential | 5 | Chalk &
Talk | Black
Board | | 5.3 | Fluorescence, phosphorescence and other deactivation process | 2 | Chalk &
Talk | Black
Board | | 5.4 | Stern –Volmer equation and its applications | 1 | Chalk &
Talk | Black
Board | | 5.5 | Photosensitisation and chemiluminescence. | 1 | Chalk &
Talk | Black
Board | | 5.6 | Experimental techniques in photochemistry flash photolysis technique. Radiation chemistry- | 3 | Chalk &
Talk | Black
Board | | | Introduction, source of high energy | | | | | 5.7 | Interaction of high energy radiation with matter, radiolysis of water | 2 | Chalk &
Talk | Black
Board | | 5.8 | G value, Primary and secondary processes. | 2 | Chalk &
Talk | Black
Board | ## **CIA Evaluation Pattern** | Levels | Better of W1, W2 | C2 M1+M 2 5+5=10 | Mid-
Sem.Tes
t | Once in a Sem. | Total
Scholasti
c Marks | Non
Scholasti
c Marks
C5 | CIA
Total | % of Assess ment | |--------|------------------|------------------|----------------------|----------------|-------------------------------|-----------------------------------|--------------|------------------| | K1 | - | - | - | - | - | | - | - | | K2 | - | 2 | 3 | - | 5 | | 5 | 12.5 % | | К3 | 5 | 3 | 4 | - | 12 | | 12 | 30 % | | K4 | - | 5 | 4 | - | 9 | | 9 | 22.5% | | К5 | - | - | 4 | 5 | 9 | | 9 | 22.5 % | | Non- | | | | | | | | | | Scho. | | | | | | | 5 | 12.5 % | | Total | 5 | 10 | 15 | 5 | 35 | 5 | 40 | 100 % | | | | | | | | | mks. | | | CIA | | | | | |----------------|----|--|--|--| | Scholastic | 35 | | | | | Non Scholastic | 5 | | | | | | 40 | | | | - $\checkmark\,$ All the course outcomes are to be assessed in the various CIA components. - $\checkmark \ \ The levels of CIAAssessment
based on Revised Bloom's Taxonomy for IPG are:$ K2-Understand, K3-Apply, K4-Analyse, K5 - Evaluate # **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | MARKS | | | | |------------|----|----|---------------------|----------------|-----|-----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 - Best of Two Weekly Tests ${f C2}$ - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Seminar (Once in a Sem.) C5 - Non - Scholastic # COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|--| | CO 1 | To Outline the selection rules for rotational and vibrational spectra and rationalize the role of the molecular dipole moment in the selection rules. | K2,K3, K4 &
K5 | PSO1, PSO2,
PSO3, PSO4,
PSO6,PS07&
PSO8 | | CO 2 | To apply knowledge to detailed
understanding of electronic
states of atoms, molecules,
Franck-Condon Principle | K2,K3, K4 &
K5 | PSO1, PSO2,
PSO3, PSO4,
PSO6,PSO7&
PSO8 | | CO 3 | To predict the number of ESR signals of organic radical anions, Complexes and NQR transitions. | K2,K3, K4 &
K5 | PSO1, PSO2,
PSO3, PSO4,
PSO6,PSO7&
PSO8 | | CO 4 | To understand molecular velocities in one, two and three dimensions | K2,K3, K4 &
K5 | PSO1, PSO2,
PSO3, PSO4,
PSO6& PSO8 | | CO 5 | To distinguish between between Fluorescence and Phosphorescence, Primary and secondary processes, radiative and non-radiative transitions, To compare Ground and excited state acidity, dipole moments and redox potentials | K ₅ | PSO1, PSO2,
PSO3, PSO4,
PSO6,PS07&
PS08 | |------|---|----------------|--| |------|---|----------------|--| # **Mapping of Cos with PSOs** | CO/
PSO | PSO
1 | PSO 2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO 7 | PSO
8 | PSO
9 | |-----------------|----------|-------|----------|----------|----------|----------|--------------|----------|----------| | CO ₁ | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 1 | | CO2 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 1 | | CO ₃ | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 1 | | CO ₄ | 3 | 3 | 3 | 3 | 1 | 3 | 1 | 3 | 1 | | CO ₅ | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 1 | # **Mapping of Cos with POs** | CO/
PSO | PO1 | PO2 | PO ₃ | PO ₄ | |-----------------|-----|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 3 | 1 | | CO ₂ | 3 | 2 | 3 | 1 | | CO ₃ | 3 | 2 | 3 | 1 | | CO ₄ | 3 | 2 | 3 | 1 | | CO ₅ | 3 | 3 | 3 | 1 | **Note:** ♦ Strongly Correlated - 3 ♦ Moderately Correlated - 2 ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Dr.S.Sukumari 2. Dr.K.R.Subimol Forwarded By **HOD'S Signature** B-Tedora. # II M.Sc., CHEMISTRY SEMESTER -IV #### For those who joined in 2022 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGO
RY | HRS/WE
EK | CREDITS | |-----------------------|----------------|-------------------------|--------------|--------------|---------| | PSCH | 19PG4CE3 | ANALYTICAL
CHEMISTRY | PG Core | 4 Hrs. | 4 | #### **COURSE DESCRIPTION** This paper focuses on all the important aspects of Analytical chemistry techniques and applications of C-programming to solve problems in CHEMISTRY. #### COURSE OBJECTIVES This paper deals with analytical methods. It also deals with programming in C language and its applications to solve problems in chemistry. #### UNITS #### UNIT -I ERROR ANALYSIS (12HRS.) Accuracy and Precision, Determinate and Indeterminate errors, Significant figures, Ways of expressing accuracy – Absolute and relative error, Standard deviation, The confidence limit, Tests of significance – The F test and The student T test, Rejection of a result – The Q test, Linear least squares to plot the data, Correlation coefficient. #### UNIT -II CHROMATOGRAPHY Principles, Adsorption, Partition, ion exchange chromatography, Instrumentation – Applications of TLC, HPLC, Paper Chromatography and Gas Chromatography. #### UNIT -III ELECTROANALYTICAL AND THERMAL METHODS (12HRS.) Coulometry and coulometric titrations, Cyclic Voltametry, Principles of DTA, TGA – Thermogravimetric curve, and DSC - Applications to simple salts – Oxysalts, Carbonates and complex salts. # UNIT -IV SPECTROPHOTOMETRIC AND RADIOCHEMICAL METHODS (12 HRS.) Principles and applications of photometry, Flame emission spectrometry, Atomic absorption spectrophotometry – Principles, Instrumentation (Block diagram), Fluorimetry, and photometric titrations. #### UNIT -V COMPUTERS IN CHEMISTRY (12HRS.) Introduction, Character set in C, Style of C Language – Identifiers and Key words – Constants, Variables and Data types, Operators in C. Input and Output in C, Control statements in C, Storage classes in C, Functions in C, Arrays and pointers, Preprocessors in C. Writing the Program using the various features of C language – Determination of mass number of any atom-Determination of electronegativity of an atom from bond energy data using pauling's relation, Calculation of ionic strength, Determination of Shapes of molecules or ions using VSEPR Theory, Determination of Normality, Molarity and Molality of solutions, Determination of half life of a radioactive nucleus. #### REFERENCES: - 1. Douglas A. Skoog, Donald M. West and F. James Holler, Fundamentals of analyticalChemistry, Harcourt Asia Pvt. Ltd., 2001. - 2. R.A. Day, Jr. and A.L. Underwood, Analytical Chemistry, Prentice-Hall of India, 2001. - 3. H. Kaur, Instrumental methods of chemical analysis, PragatiPrakashan, 2003. - 4. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of QuantitativeChemical Analysis, Longman Scientific and Technical, 1989. - 5. Balagurusamy E, Programming in ANSI C. - 6. Raman KV, Computers in Chemistry. #### **OURSE CONTENTS & LECTURE SCHEDULE:** | Modul
e No. | Topic | No. of
Lectures | Teaching
Pedagogy | Teaching
Aids | | | | | | |----------------|---|--------------------|----------------------|-------------------------|--|--|--|--|--| | | UNIT -1 ERROR ANALYSIS | | | | | | | | | | 1.1 | Accuracy and Precision | 2 | Discussion | PPT &
White
board | | | | | | | 1.2 | Determinate and Indeterminate errors | 1 | Discussion | PPT &
White
board | | | | | | | 1.3 | Significant figures, Ways of expressing accuracy | 2 | Discussion | Black
Board | | | | | | | 1.4 | Absolute and relative error,
Standard deviation, The
confidence limit | 1 | Chalk &
Talk | LCD | | | | | | | 1.5 | Tests of significance – The F test and | 2 | Discussion | PPT &
White
board | | | | | | | 1.6 | The student T test, Rejection of a result | 2 | Lecture | Smart
Board | | | | | | | 1.7 | The Q test, Linear least squares to plot the data, Correlation coefficient. | 2 | Lecture | Black
Board | | | | | | | | UNIT -2 CHROMATOGRAPHY | | | | | | | | | | 2.1 | Principles, Adsorption | 2 | Lecture | Black
Board | | | | | | |---|--|---|-----------------|-------------------------|--|--|--|--|--| | 2.2 | Partition chromatography | 2 | Chalk &
Talk | Black
Board | | | | | | | 2.3 | Ion exchange chromatography | 2 | Chalk &
Talk | Black
Board | | | | | | | 2.4 | HPLC | 2 | Chalk &
Talk | Black
Board | | | | | | | 2.5 | Paper Chromatography. | 2 | Chalk &
Talk | Black
Board | | | | | | | 2.6 | Gas Chromatography. | 2 | Chalk &
Talk | PPT &
White
board | | | | | | | UNIT -III ELECTROANALYTICAL AND THERMAL METHODS | | | | | | | | | | | 3.1 | Coulometry | 2 | Chalk &
Talk | Green
Board | | | | | | | 3.2 | Coulometric titrations | 2 | Discussion | LCD | | | | | | | 3.3 | Cyclic Voltametry | 2 | Chalk &
Talk | Black
Board | | | | | | | 3.4 | Principles of TGA | 2 | Discussion | LCD | | | | | | | 3.5 | Principles of DSC | 2 | Lecture | Black
Board | | | | | | | 3.6 | Applications to simple salts | 1 | Lecture | Black
Board | | | | | | | 3.7 | Applications to Oxysalts | 2 | Chalk &
Talk | Black
Board | | | | | | | 3.8 | Carbonates and complex salts. | 2 | Chalk &
Talk | Green
Board | | | | | | | UNIT | UNIT -4 SPECTROPHOTOMETRIC AND RADIOCHEMICAL METHODS | | | | | | | | | | 4.1 | Principles of photometry | 2 | Chalk &
Talk | Black
Board | |-----|---|----------|-------------------------|-------------------------| | 4.2 | Applications of photometry | 1 | Lecture | Black
Board | | 4.3 | Flame emission spectrometry | 2 | Chalk &
Talk | Black
Board | | 4.4 | Atomic absorption spectrophotometry | 1 | Chalk &
Talk | Black
Board | | 4.5 | Principlesof Fluorimetry | 2 | Chalk
&Talk | BlackBoar
d | | 4.6 | Instrumentation (Block diagram)
Fluorimetry | 2 | Discussion | LCD | | 4.7 | Photometric titrations. | 2 | Lecture | Black
Board | | | UNIT -5 COMPUTERS I | N CHEMIS | STRY | | | 5.1 | Introduction, Character set in C,
Style of C Language | 1 | Chalk &
Talk | Black
Board | | 5.2
| Identifiers and Key words –
Constants, Variables and Data
types, Operators in C | 1 | Lecture | Black
Board | | 5.3 | Input and Output in C, Control | 1 | Chalk & | Black | | | statements in C | | Talk | Board | | 5.4 | Storage classes in C, Functions in C, Arrays and pointers, Preprocessors in C. | 1 | Talk
Chalk &
Talk | Board
Black
Board | | 5.6 | Determination of electronegativity of an atom from bond energy data using pauling's relation, Calculation of ionic strength | | Chalk &
Talk | Black
Board | |-----|--|----|-----------------|----------------| | 5.7 | Determination of Shapes of
molecules or ions using VSEPR
Theory | | Discussion | LCD | | 5.8 | Detemination of Normality,
Molarity and Molality of
solutions, Determination of half
life of a radioactive nucleus. | ') | Lecture | Black
Board | | | C1 | C2 | C3 | C4 | Total
Scholastic
Marks | Non
Scholastic
Marks
C5 | CIA
Total | 0/ 6 | |-------------------|---------|------------------------|--------|---------------------|------------------------------|----------------------------------|--------------|------------------------| | Levels | Seminar | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | % of
Assessm
ent | | | 5 Mks. | 5+5=10
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mks. | | | K1 | 5 | - | - | 2 ½ | - | | - | - | | K2 | - | 5 | 4 | 2 ½ | 5 | | 5 | 12.5
% | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | ı | ı | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholastic | - | - | ı | | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | Non Scholastic 5 40 - √ All the course outcomes are to be assessed in the various CIA components. - √ The levels of CIA Assessment based on Revised Bloom's Taxonomy for II PG are: **K1-** Remember, **K2-**Understand, **K3-**Apply, **K4-**Analyse #### **EVALUATION PATTERN** | | SCHO | LASTIC | | NON -
SCHOLASTIC | MARKS | | | |----|------|--------|----|---------------------|-------|---------|-----| | C1 | C2 | СЗ | C4 | C 5 | CIA | CIA ESE | | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | **C1** – Seminar Marks **C2** – Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests **C5** – Non - Scholastic #### **COURSE OUTCOMES** On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE LEVEL (ACCORDING TO REVISED BLOOM'S TAXONOMY) | PSOs
ADDRESSED | |-----|-----------------|---|-------------------| |-----|-----------------|---|-------------------| | CO 1 | To explain the confidence level and confidence limit, the sources of random errors and effects of random errors on analytical results. | · | PSO1& PSO2 | |------|---|--------------------|------------| | CO 2 | To illuminate the theoretical principles of various separation techniques inchromatography, and typical applications of chromatographic techniques | K2, K3, K4 &
K5 | PSO3 | | со з | To explicate the theoretical principles of electro analytical and spectrometric methods | · | PSO5 | | CO 4 | To illuminate the theoretical principles of selected instrumental methods and main components in such analytical instruments. | · · · | PSO2 | | CO 5 | To acquire the complete knowledge of C language AND To develop logics which will help them to create programs, applications of chemistry problems in C. | | PSO3 | # Mapping of COs with PSOs | CO/
PSO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 | PSO7 | PSO8 | PSO9 | |------------|------|------|------|------|------|------|------|------|------| | CO1 | 3 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | | соз | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 1 | | CO4 | 2 | 2 | 1 | 1 | 2 | 3 | 2 | 1 | 1 | | CO5 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | 1 | # Mapping of COs with Pos | CO/ PSO | PO1 | PO2 | PO3 | PO4 | |---------|-----|-----|-----|-----| | CO1 | 3 | 2 | 1 | 1 | | CO2 | 2 | 3 | 1 | 1 | | соз | 3 | 2 | 1 | 1 | | CO4 | 2 | 3 | 1 | 1 | | CO5 | 3 | 2 | 1 | 1 | **Note**: ♦ Strongly Correlated – **3** ♦ Moderately Correlated – **2** ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** Dr.M.Priyadharsani Forwarded By B-Tedora. # CBCS Curriculum for M.Sc. Chemistry SEMESTER –IV #### For those who joined in 2019 onwards | PROGRAM | COURSE | COURSE TITLE | CATE | HRS/WEE | CREDIT | |---------|----------|-------------------------|--------------|---------|--------| | ME CODE | CODE | | GORY | K | S | | PSCH | 19PG4CE4 | CHEMICAL
ENGINEERING | ELEC
TIVE | 4 Hrs. | 4 | **Objective:** This paper deals with analytical methods. It also deals with programming in C language and its applications to solve problems in chemistry. #### COURSE OUTCOME After successful completion of the course, students will be able - To write C- Program using various features of C- language - To categorize the various conditioning methods in water treatment - To apply the principles involved in spectrophotometric analysis. - To compare the mechanism between dry corrosion and wet corrosion - To synthesize some industrially important polymers # Unit-I Programming in C Language and its applications in Chemistry (12Hrs) - (a) Introduction, Character set in C, Style of C Language Identifiers and Key words Constants, Variables and Data types, Operators in C. - (b) Input and Output in C, Control statements in C, Storage classes in C, Functions in C, Arrays and pointers, Preprocessors in C, The type def statement and Files in C language. Writing the Program using the various features of C language -Determination of Mass number for an atom, Shapes of molecules using VSEPR Theory, Determination of Normality. #### Unit –II Water Technology (12Hrs) Hardness of water- Estimation of hardness – Treatment of water for domestic supply –Boiler feed water and its requirements – softening and conditioning methods – External and internal conditioning-Desalination of Brackish water. #### Unit -III Spectrophotometric methods and Radiochemical methods (12Hrs) Principles and applications of photometry, Flame emission spectrometry, Atomic absorption spectrophotometry – Principles, Instrumentation (Block diagram), Fluorimetry. #### Unit -IVNon conventional energy sources (12Hrs) Nuclear energy – Light water nuclear power plant –Breeder Reactor- Solar energy – Solar hear collectors- solar water heater-Solar cells and its applications -Wind energy –Methods of harnessing wind energy-and Fuel Cells-Hydrogen oxygen fuel cells-Fuel battery-Merits and Demerits. ### Unit-VPolymers (12Hrs) Introduction-Types of polymerization, Mechanism, Plastics, Classification-Engineering plastics, Rubber or elastomers-Vulcanization of Rubber and important synthetic Rubbers-Composites-Types of composites. #### References: - 1. Programming in ANSI C by E.Balagurusamy - 2. Computers in Chemistry by K.V.Raman - 3. Instrumentalmethods of analysis by Willard merit Dean #### COURSE CONTENTS & LECTURE SCHEDULE: | Modul
e No. | No. of Lec tur es | Teaching
Pedagogy | Teaching Aids | |----------------|-------------------|----------------------|---------------| |----------------|-------------------|----------------------|---------------| | UNI | UNIT -1 TITLE: Programming in C Language and its applications in Chemistry | | | | | | | |--------|--|-------|--------------|-------------------|--|--|--| | 1.1 | Introduction, Character set in C | 1 | Chalk & Talk | Black Board | | | | | 1.2 | Style of C Language | 3 | Chalk & Talk | Black Board | | | | | 1.3 | Identifiers and Key words | 1 | Lecture | Black Board | | | | | 1.4 | Constants, Variables and
Operators in C. Input and
Output in C, Control
statements in C, Storage
classes in C, | 3 | Lecture | PPT & White board | | | | | 1.5 | Functions in C | 2 | Lecture | Black Board | | | | | 1.6 | Arrays and pointers | 2 | Chalk & Talk | Black Board | | | | | 1.7 | Writing the Program using
the various features of C
language | 2 | Chalk & Talk | PPT & White board | | | | | 1.8 | Determination of half
life of a radio active
nucleus | 1 | Lecture | Black Board | | | | | UNIT - | 2 TITLE - Water Tech | nolog | y | | | | | | 2.1 | Hardness of water -
introduction | 2 | Chalk & Talk | Black Board | | | | | 2.2 | Equivalents of calcium carbonate- units of hardness | 2 | Chalk & Talk | Black Board | | | | | 2.3 | Estimation of hardness | 1 | Chalk & Talk | Black Board | | | | | 2.4 | Treatment of water for domestic supply | 1 | Chalk & Talk | Black Board | | | | | 2.5 | Boiler feed water and its requirements | 2 | Chalk & Talk | PPT & White board | | | | | scale and sludge formation
in boilersCaustic
embrittlement-priming and
foaming- | 2 | Lecture | Black Boa | ard | | | | |--|---
---|--|--|--|--|--| | softening and conditioning
methods External and
internal conditioning. | 3 | Power point | Black Boa | ard | | | | | Desalination of Brackish
water- Reverse osmosis | 2 | Power point | Black Boa | ard | | | | | | tric m | ethods and Ra | diochemical | | | | | | ls | | | | | | | | | Principles of photometry | 1 | Lecture | Black Bo | ard | | | | | Applications of photometry | 2 | Lecture | LCD | | | | | | Atomic absorption
spectrophotometry -
Principles | 2 | Lecture | Black Bo | ard | | | | | Applications of AAS | 2 | Lecture | Black Bo | ard | | | | | Fluorimetry | 2 | Chalk & Talk | Black Bo | ard | | | | | Turbidimetry | 2 | Chalk & Talk | Black Bo | ard | | | | | Nephelometry | 2 | Chalk & Talk | Black Bo | ard | | | | | Photometric titrations | 2 Chalk & Talk | | Black Bo | ard | | | | | UNIT -4 TITLE- Corrosion and its control | | | | | | | | | Introduction - dry or chemical corrosion | 2 | | Chalk &
Talk | Black
Board | | | | | dry or chemical corrosion | | 3 | Chalk &
Talk | Black
Board | | | | | | in boilersCaustic embrittlement-priming and foaming- softening and conditioning methods External and internal conditioning. Desalination of Brackish water- Reverse osmosis 3 TITLE - Spectrophotomet Is Principles of photometry Applications of photometry Atomic absorption spectrophotometry - Principles Applications of AAS Fluorimetry Turbidimetry Nephelometry Photometric titrations 4 TITLE- Corrosion and its of the corrosion Introduction - dry or chemical corrosion | in boilersCaustic embrittlement-priming and foaming- softening and conditioning methods External and internal conditioning. Desalination of Brackish water- Reverse osmosis 2 3 TITLE - Spectrophotometric males Principles of photometry 1 Applications of photometry 2 Atomic absorption spectrophotometry - Principles Applications of AAS 2 Fluorimetry 2 Turbidimetry 2 Nephelometry 2 Photometric titrations 2 TITLE - Corrosion and its controllemical corrosion | in boilersCaustic embrittlement-priming and foaming- softening and conditioning methods External and internal conditioning. Desalination of Brackish water- Reverse osmosis 2 Power point 3 TITLE - Spectrophotometric methods and Radis Principles of photometry Applications of photometry Atomic absorption spectrophotometry- Principles Applications of AAS Applications of AAS Chalk & Talk Turbidimetry Chalk & Talk Photometric titrations 2 Chalk & Talk TITLE- Corrosion and its control Introduction - dry or chemical corrosion | in boilers Caustic embrittlement-priming and foaming- softening and conditioning methods External and internal conditioning. Desalination of Brackish water- Reverse osmosis 3 Power point Black Board Boa | | | | | 4.3 | Wet or electro chemical corrosion - | | 2 | Chalk &
Talk | Black
Board | | |---------------------------|--|------|---|-----------------|----------------|--| | 4.4 | galvanic corrosion,
concentration cell corrosion-
passivity | | 3 | Lecture | Power point | | | 4.5 | passivity- pitting corrosion-
intergranular corrosion | | 2 | Lecture | Power point | | | 4.6 | intergranular corrosion-
water line corrosion | | 2 | Chalk &
Talk | Power point | | | 4.7 | stress corrosion- factors
influencing corrosion-
protection against corrosion | | 2 | Chalk &
Talk | Power point | | | 4.8 | corrosion inhibitors-
applications of protective
coatings | 2 | | Chalk &
Talk | Power point | | | UNIT - 5 TITLE - Polymers | | | | | | | | 5.1 | Introduction, Engineering plas | stic | 1 | Chalk &
Talk | Black
Board | | | 5.2 | Rubber or elastomers | | 2 | Chalk &
Talk | LCD | | | 5.3 | Vulcanization of Rubber | | 2 | Chalk &
Talk | Black
Board | | | 5.4 | Poly methyl methacrylate ,poly esters- | 7 | 3 | Chalk &
Talk | Black
Board | | | 5.5 | poly sulphones-poly imides-poly
vinyl acetate-poly butadiene-poly
chloro prene | | 2 | lecture | LCD | | | 5.6 | phenol-formaldehyde resin-urea-
formaldehyde and melamine | | 2 | lecture | LCD | | | 5.7 | melamine formaldehyde resin-
epoxy polymers | _ | 1 | lecture | LCD | | | 5.8 | silicone polymers. | | 2 | Chalk &
Talk | Black
Board | | | | C1 | C2 | С3 | C4 | Total
Scholas
tic
Marks | Non
Scholas
tic
Marks | CIA
Total | % of
Assess | |-----------------------|-------------|------------------------|--------|---------------------|----------------------------------|--------------------------------|--------------|----------------| | Levels | Semina
r | Better
of W1,
W2 | M1+M2 | MID-
SEM
TEST | | | | ment | | | 5 Mks. | 5+5=1
0
Mks. | 15 Mks | 5 Mks | 35 Mks. | 5 Mks. | 40Mk
s. | | | K1 | 5 | - | - | 2 1/2 | - | | - | - | | K2 | - | 5 | 4 | 2 1/2 | 5 | | 5 | 12.5
% | | К3 | - | - | 3 | 5 | 12 | | 12 | 30 % | | K4 | - | - | 3 | 5 | 9 | | 9 | 22.5% | | Non
Scholast
ic | - | - | - | - | 9 | | 9 | 22.5 % | | Total | 5 | 5 | 10 | 15 | 35 | 5 | 40 | 100 % | | CIA | | |----------------|----| | Scholastic | 35 | | Non Scholastic | 5 | | | 40 | - **√** All the course outcomes are to be assessed in the various CIA components. - √ The levels of CIA Assessment based on Revised Bloom's Taxonomy for I PG are: **K2-**Understand, **K3-**Apply, **K4-**Analyse, **K4-** Evaluate ✓ The I PG course teachers are requested to start conducting S1, W1, M1, #### **EVALUATION PATTERN** | SCHOLASTIC | | | NON -
SCHOLASTIC | | | | | |------------|----|----|---------------------|----------------|-----|-----|-------| | C1 | C2 | С3 | C4 | C ₅ | CIA | ESE | Total | | 5 | 10 | 15 | 5 | 5 | 40 | 60 | 100 | C1 - Average of Two Session Wise Tests C2 - Average of Two Monthly Tests C3 - Mid Sem Test C4 - Best of Two Weekly Tests C5 - Non - Scholastic ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | KNOWLEDGE
LEVEL
(ACCORDING
TO REVISED
BLOOM'S
TAXONOMY) | PSOs
ADDRESSED | |------|---|--|-------------------| | CO 1 | To write C- Program using various features of C- language | K2, K3, K4
&K5 | PSO1& PSO2 | | CO 2 | To categorize the various conditioning methods in water treatment | K2, K3, K4
&K5 | PSO3 | | CO 3 | To apply the principles involved in spectrophotometric analysis. | K2, K3, K4
&K5 | PSO ₅ | | CO 4 | To compare the mechanism between dry corrosion and wet corrosion | K2, K3, K4
&K5 | PSO4 | | CO 5 | To synthesize some industrially important polymeres | K2, K3, K4
&K5 | PSO ₅ | # **Mapping of Cos with PSOs** | CO/ | PSO |-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | CO ₁ | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | | CO2 | 2 | 1 | 3 |
1 | 1 | 1 | 1 | 1 | 1 | | CO ₃ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | | CO ₄ | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | | CO ₅ | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | # Mapping of C0s with POs | CO/
PSO | PO ₁ | PO2 | PO ₃ | PO ₄ | |-----------------|-----------------|-----|-----------------|-----------------| | CO ₁ | 3 | 2 | 2 | 2 | | CO2 | 2 | 3 | 2 | 2 | | CO3 | 2 | 2 | 3 | 2 | | CO ₄ | 3 | 2 | 2 | 2 | | CO ₅ | 3 | 2 | 2 | 2 | **Note**: ◆ Strongly Correlated - **3** ◆ Moderately Correlated - **2** ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** #### 1. Dr. B.SUGANTHANA B-Tedora. Forwarded By **HOD'S Signature** #### SEMESTER -IV #### For those who joined in 2019 onwards | PROGRAMM | COURSE | COURSE | CATEGOR | HRS/WEE | CREDIT | |----------|----------|---|---------|---------|--------| | E CODE | CODE | TITLE | Y | K | S | | PSCH | 19PG4C18 | PHYSICAL CHEMISTRY PRACTICALS- II (Non- Electrical Experiments) | LAB | 6 | 4 | #### **Course Objective:** This course gives lab experience on physical experiments. #### Course outcomes: After completion of the course the students should be able to: - Experience in some scientific methods employed in basic and applied physical chemistry - Developed skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry - Developed skills in the scientific method of planning, developing, conducting, reviewing and reporting experiments - Developed some understanding of the professional and safety responsibilities residing in working with chemical systems. - PHYSICAL CHEMISTRY EXPERIMENTS - Adsorption Characteristics of Oxalic acid and charcoal - Adsorption Characteristics of Acetic acid and charcoal - Acid catalysed hydrolysis of methyl acetate-Volumetry - Activation energy of acid catalysed hydrolysis of methyl acetate - Effect of ionic strength on the rate of persulphate iodide reaction - Catalytic constant of an acid (Acetone and iodine in the presence of an acid) - Kinetic of oxidation of alcohols by K₂Cr₂O₇ by spectrophotometry. - Kinetics of iodination of acetone by spectrophotometry. #### Reference Book B. Viswanathan, P.S. Raghavan, Practical Physical Chemistry, 2005. ## COURSE OUTCOMES On the successful completion of the course, students will be able to: | NO. | COURSE OUTCOMES | PSOs ADDRESSED | |------|--|--------------------------------| | CO 1 | Study the Adsorption Characteristics of Oxalic acid/Acetic and charcoal | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 2 | Determine rate constant for acid /alkali
catalyzed Hydrolysis of Ethylacetate
volumetrically | PSO1, PSO2, PSO3,
PSO6&PSO7 | | СОЗ | Determine activation energy | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 4 | Study the Effect of ionic strength on the rate of persulphate iodide reaction | PSO1, PSO2, PSO3,
PSO6&PSO7 | | CO 5 | Study the kinetics of iodination of acetone. | PSO1, PSO2, PSO3,
PSO6&PSO7 | # **Mapping of Cos with PSOs** | CO/
PSO | PSO1 | PSO2 | PSO ₃ | PSO ₄ | PSO ₅ | PSO6 | PSO ₇ | PSO8 | PSO9 | |-----------------|------|------|------------------|------------------|------------------|------|------------------|------|------| | CO ₁ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₂ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 3 | 1 | 1 | 3 | 3 | 2 | 1 | | CO/ PSO | PO1 | PO2 | PO ₃ | PO4 | |-----------------|-----|-----|-----------------|-----| | CO ₁ | 3 | 3 | 2 | 1 | | CO2 | 3 | 3 | 2 | 1 | | CO ₃ | 3 | 3 | 2 | 1 | | CO ₄ | 3 | 3 | 2 | 1 | | CO ₅ | 3 | 3 | 2 | 1 | **Note:** ◆ Strongly Correlated - **3** ◆ Moderately Correlated - **2** ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Dr. B.MEDONA 2. Dr. S.SUKUMARI Forwarded By **HOD'S Signature** B-Tedora. #### FATIMA COLLEGE (AUTONOMOUS) MADURAI-18 PROJECT-19PG4CPR SEMESTER -III (For those who joined from 2007 onwards) #### PROJECT WORK All the second PG students are sent to do three months project(MAY,JUNE AND JULY) in various reputed research institutions #### I M.Sc., SEMESTER -1 #### For those who joined in 2019 onwards | PROGRA
MME
CODE | COURSE
CODE | COURSE TITLE | CATEGO
RY | HRS/WE
EK | CREDITS | | |-----------------------|----------------|-------------------------|---------------------|--------------|---------|--| | PSCH | 21PG2SLC | Research
Methodology | PG Self
learning | - | 2 | | #### **COURSE DESCRIPTION** This paper focuses on all the important aspects of Research Methodology #### **COURSE OBJECTIVES** This course helps the students to study about all concepts related to Research problem, literature survey, Web and library resources for research and writing research papers and proposals. #### **Course Outcomes (COs)** | CO1 | Introduce the purpose and importance of research. | |-----|--| | CO2 | Understand the various sources of information for literature | | | survey. | | CO3 | Illustrate the Web and library resources for research. | | CO4 | Understand the writing of research papers &know the | | | methodology of writing thesis and journal articles. | | CO5 | Analyse the writing of research proposal. | #### **UNIT - 1: Introduction to Research** The search for knowledge, purpose of research, scientific method, characteristics of research, Types of research- fundamental or pure research, applied research, action research, historical research, experimental research. Explanation of research problems, sources of research problems, selection of research problem characteristics of a good research problem, errors in selecting a research problem. #### **UNIT-II: Literature Survey** Sources of information, Primary, Secondary, Tertiary sources, Journals, Journal abbreviations, Abstracts, Current titles, Reviews, Monographs, Textbooks, Current contents, Introduction to Chemical Abstracts. Online searching, Database, *Scifinder, Scopus*, Citation Index, Impact Factor. #### **UNIT-III:** Use of Web resources The Internet and World Wide Web, internet resources for chemistry, internet search engines, using spreadsheets, word processors, databases and other packages, finding and citing information. #### **UNIT-IV: Scientific Writing** General aspects of scientific writing, reporting practical and project work, Format of the research report, style of writing the report, references and bibliography, Steps to publish a scientific article in a journal: types of publications- communications, articles, reviews; when to publish, where to publish, specific format required for submission, organization of the material, abbreviations used in scientific writing. **UNIT-V:** Writing of Research Proposal: Research Proposal: Format of research proposal, individual research proposal and institutional proposal. #### **Reference Books:** - 1. Ranjit kumar, Research Methodology: A Step by Step Guide for Beginners, Pearson Education; 2nd Ed., (2005). - 2. Dr.C.R. Kothari, Research Methodology: Methods and Techniques, New Age International Publishers, 2^{nd Ed.,} New Delhi (2014.) - 3. M.D. Barbara Gastel and Robert A. Day, How to Write and Publish a Scientific Paper, Greenwood Publishing Group Inc, 8th Ed., 2016. - 4. Tanmoy Chakraborty and Lalita Ledwani, Research Methodology in Chemical Sciences: Experimental and Theoretical Approach, Apple Academic Press; 1st Ed.,, 2016. - 5. R. L. Dominoswki, Research Methods, Prentice Hall, 1981. - 6. H. F. Ebel, C. Bliefert and W. E. Russey, The Art of Scientific Writing, VCH, Weinheim, 1988. - 7. H. M. Kanare, Writing the Laboratory Notebook; American Chemical Society: Washington, DC, 1985. - 8. J. S. Dodd, Ed., The ACS Style Guide: A Manual for Authors and Editors; American Chemical Society: Washington, DC, 1985. - 9. Gibaldi, J. Achtert, W. S. Handbook for writers of Research Papers; 2nd ed.; Wiley Eastern, 1987. - 10. Joseph, A. Methodology for Research; Theological Publications: Bangalore, 1986 #### **PSO** | | Equip with an in-depth knowledge of varied fields namely | |-------|--| | DOC 1 | | | PSO 1 | Organic Chemistry, Inorganic Chemistry, Physical and | | | nanochemistry. | | PSO 2 | Train in problem solving procedures enables to interpret the | | PSU 2 | experimental data into structures and mechanisms. | | | Provides a tremendous exposure and cultivates analytical and | | PSO 3 | synthesising measures necessary to take up project work in | | | reputed institutions. | | DGC 4 | Programme renders diversified thinking thereby promotes | | PSO 4 | creative skills. | | PSO 5 | to solve the problems that cause a negative impact on | | PSO 5 | surroundings to pursue salient steps to safeguard environment | | DOO 6 | Application-oriented input sharpens the skill to undertake CSIR- | | PSO 6 | NET exam. | | DCC 7 | Knowledge with practical dimensions becomes a driving power to | | PSO 7 | undertake research in different areas at a global level. | | DOC 0 | Multi-layered input enables to avail opportunities at chemical, | | PSO 8 | pharmaceutical industries. | | DOC O | | | PSO 9 | Becomes a contributing force and development agent in society. | | μ | | # Mapping of COs with PSOs | CO/
PSO | PSO
1 | PSO
2 | PSO
3 | PSO
4 | PSO
5 | PSO
6 | PSO
7 | PSO
8 | PSO
9 | |------------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | CO1 | 1 | 2 | 3 | 3 | 1 | 1 | 3 | 2 | 1 | | CO2 | 2 | 1 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | | CO3 | 1 | 2 | 1 | 3 | 1 | 1 | 3 | 2 | 1 | | CO4 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | 2 | 1 | | CO5 | 1 | 3 | 3 | 3 | 1 | 1 | 3 | 2 | 1 | Mapping of COs with POs | CO/
PSO | PO1 | PO2 | РО3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | |------------|-----|-----|-----|-----|-----|-----|-----|-----
-----| | CO1 | | | | | | | | | | | CO2 | | | | | | | | | | | CO3 | | | | | | | | | | | CO4 | | | | | | | | | | | CO5 | | | | | | | | | | **Note**: ♦ Strongly Correlated – **3** ♦ Moderately Correlated – **2** ♦ Weakly Correlated -1 #### **COURSE DESIGNER:** 1. Dr.S.Sukumari Forwarded By **HOD'S Signature** & Name