FATIMA COLLEGE (AUTONOMOUS)

Re-Accredited with "A" Grade by NAAC (3rd Cycle) 74th Rank in India Ranking 2020 (NIRF) by MHRD Maryland, Madurai- 625 018, Tamil Nadu, India

NAME OF THE DEPARTMENT : Statistics

NAME OF THE PROGRAMME : B.Sc. Statistics

PROGRAMME CODE : USST

ACADEMIC YEAR : 2020 - 2021

FATIMA COLLEGE (AUTONOMOUS), MADURAI-18 DEPARTMENT OF STATISTICS

For those who joined in June 2019 onwards

PROGRAMME CODE: USST

PART - I - TAMIL / FRENCH / HINDI- 12 CREDITS

PART - I - TAMIL

Offered by the Research Centre of Tamil

S. NO	SEM.	COURSE CODE	COURSE TITLE	HRS	CRS	CIA Mks	ESE Mks	TOT. Mks
1.	I	19T1LC1	Language-Modern Literature	5	3	40	60	100
2.	II	19T2LC2	Language - Bakthi Literature	5	3	40	60	100
3.	III	19T3LC3	Language- Epic Literature	5	3	40	60	100
4.	IV	19T4LC4	Language-Sangam Literature	5 3 40		40	60	100
			Total	20	12			

PART - I -FRENCH

Offered by The Department of French

S. NO	SEM.	COURSE CODE	COURSE TITLE	HRS	CRE DITS	CIA Mks	ESE Mks	TOT. MKs
1.	I	19R1LC1	PART 1 LANGUAGE FRENCH - LE NIVEAU INTRODUCTIF	5	3	40	60	100
2.	II	19R2LC2	PART 1 LANGUAGE FRENCH - LE NIVEAUDÉCOUVERTE	5	3	40	60	100
3.	III	19R3LC3	PART 1 LANGUAGE FRENCH - LE NIVEAU	5	3	40	60	100

S. NO	SEM.	COURSE CODE	COURSE TITLE	HRS	CRE DITS	CIA Mks	ESE Mks	TOT. MKs
			INTERMEDIAIRE – LA					
			CIVILISATION, LA					
			LITTERATURE ET LA					
			GRAMMAIRE					
			PART 1 LANGUAGE					
			FRENCH - LE NIVEAU DE					
		4054764	SUIVRE – LA	_		4.0		100
4.	IV	19R4LC4	CIVILISATION, LA	5	3	40	60	100
			LITTERATURE ET LA					
			GRAMMAIRE					
			TOTAL	20	12			

PART – I –HINDI

Offered by The Department of Hindi

S. NO	SE M.	COURSEC ODE	COURSE TITLE	HRS	CRE DITS	CIA Mks		TOT. MKs
1.	I	19D1LC1	PART 1 LANGUAGE HINDI	5 3 40		60	100	
2.	II	19D2LC2	PART 1 LANGUAGE HINDI	5	3	40	60	100
3.	III	19D3LC3	PART 1 LANGUAGE HINDI	5	3	40	60	100
4.	IV	PART 1 LANGUAGE HINDI		60	100			
			TOTAL	20	12			

PART - II -ENGLISH - 12 CREDITS

Offered by The Research Centre of English

S. NO	SEM.	COURSEC	COURSE TITLE	HRS	CRE DITS	CIA Mks	ESE Mks	TOT MKs
1.		19E1LB1	BASIC COMMUNICATIVE ENGLISH					
2.	I	19E1LI1	INTERMEDIATE COMMUNICATIVE ENGLISH	5	3	40	60	100
3.		19E1LA1	ADVANCED COMMUNICATIVE ENGLISH					
4.		19E2LB2	ENGLISH COMMUNICATION SKILLS					
5.	II	19E2LI2	ENGLISH FOR EMPOWERMENT	5	3	40	60	100
6.		19E2LA2	ENGLISH FOR CREATIVE WRITING					
7.	III	19E3LC3	ENGLISH FOR DIGITAL ERA	5	3	40	60	100
8.	IV	19E4LC4	ENGLISH FOR INTEGRATED DEVELOPMENT	5	3	40	60	100
			TOTAL	20	12			

PART - III -MAJOR, ALLIED & ELECTIVES - 95 CREDITS

CORE COURSES: 60 CREDITS

S. NO	SEM.	COURSE CODE	COURSE TITLE	HRS	CRS	CIA Mks	ESE Mks	TOT. Mks
1.		19ST1CC1	BASIC STATISTICS	6	4	40	60	100
2.	I	19ST1CC2	PROBABILITY THEORY	6	4	40	60	100
3.		19ST2CC3	DESCRIPTIVE STATISTICS	6	4	40	60	100
4.	II	19ST2CC4	DISCRETE PROBABILITY DISTRIBUTIONS	6	4	40	60	100
5.	Ш	19ST3CC5	DISTRIBUTION THEORY – I	6	4	40	60	100
6.		19ST3CC6	SAMPLING THEORY	6	4	40	60	100
7.	IV	19ST4CC7	STATISTICAL INFERENCE – I	6	4	40	60	100
8.		19ST4CC8	APPLIED STATISTICS	6	4	40	60	100
9.	v	ST5CC9	STATISTICAL INFERENCE – I	6	5	25	75	100
10.		ST5CC10	DESIGN OF EXPERIMENTS	6	5	25	75	100
11.		ST5CC11	COMPUTER PROGRAMMING IN C	6	5	25	75	100
12.		ST5CCP1	C PRACTICALS	2	2	40	60	100
13.	VI	ST6CC12	STATISTICAL QUALITY CONTROL	5	4	25	75	100
14.		ST6CC13	STOCHASTIC PROCESSES 6		6	25	75	100
15.		ST6CC14	OPERATIONS RESEARCH	5	4	25	75	

S. NO	SEM.	COURSE CODE	COURSE TITLE	HRS	CRS	CIA Mks	ESE Mks	TOT. Mks
1.	I	19ST1AC1	CALCULUS	5	5	40	60	100
2.	II	19ST2AC2	ALGEBRA	5	5	40	60	100
3.	III	19ST3AC3	LINEAR PROGRAMMING	5	5	40	60	100
4.	IV	19ST4AC4	LINEAR ALGEBRA	5	5	40	60	100

ELECTIVES-15 CREDITS

S. No	SEM.	COURSEC	COURSE TITLE	HR S	CR EDI TS	CIA Mks	ESE Mks	TOT. Mks
1.	V	ST5ME1/ ST5ME2	REAL ANALYSIS/ MULTIVARIATE ANALYSIS	5	5	25	75	100
2.	VI	ST6ME3/ ST6ME4	NUMERICAL METHODS/ REGRESSION ANALYSIS	5	5	25	75	100
3.	VI	ST6ME5/ ST6ME6	ACTUARIAL STATISTICS/ INDUSTRIAL STATISTICS	ACTUARIAL STATISTICS/ 5 5		25	75	100
		TOTAL	15	15				

PART - IV - 20 CREDITS

- VALUE EDUCATION
- ENVIRONMENTAL AWARENESS
- NON MAJOR ELECTIVE
- SKILL BASED COURSES

S. No	SEM.	COURSE CODE	COURSE TITLE	HRS	CRS	CIA Mks	ESE Mks	TOT. Mks
1.	Ι	19G1VE	Value Education (Including Meditation in Action Movement)	1	1	40	60	100

2.		19ST1NME	FUNDAMENTALS OF STATISTICS	2	2	40	60	100
3.		19G2VE	Value Education	1	1	40	60	100
4.	II	19ST2NME	FUNDAMENTALS OF STATISTICS	2	2	40	60	100
5.	III	19G3EE	Environmental Education	1	1	40	60	100
6.	111	19ST3SB1	PRACTICAL STATISTICS I	2	2	40	60	100
7.	IV	19G4EE	Environmental Education	1	1	40	60	100
8.	10	19ST4SB2	PRACTICAL STATISTICS -II	2	2	40	60	100
9.	V	ST5SB3	PRACTICAL STATISTICS – III	2	2	25	75	100
10.	V	ST5SB4	STATISTICAL SOFTWARE: SPSS	2	2	25	75	100
11.	VI	ST6SB5	PRACTICAL STATISTICS – IV	2	2	25	75	100
12.	VI	ST6SB6	STATISTICAL SOFTWARE: R	2	2	25	75	100

PART - V - 1CREDIT

OFF-CLASS PROGRAMME ALL PART-V

- Physical Education
- Rotaract
- Women Empowerment Cell
- AICUF
- Youth Red Cross / NSS

OFF-CLASS PROGRAMME

ADD-ON COURSES

COURSE CODE	Courses	HRS	CRS	Semester in which the course is offered	CIA Mks	ESE Mks	TOT. Mks
19UAD2CA	COMPUTER APPLICATIONS	40	2	I&II	40	60	100
19UADFCA	ONLINE SELF LEARNING COURSE- Foundation Course for Arts	40	3	I	50	-	50
19UADFCS	ONLINE SELF LEARNING COURSE- Foundation Course for Science	40	3	II	50	-	50
19UADES3	Social & Professional Ethics	15	1	III	40	60	100
19UADES3	Personality Development	15	1	IV	40	60	100
	HUMAN RIGHTS	15	2	V	-	-	100
	OUTREACH PROGRAMME- Reach Out to Society through ActionROSA	100	3	V & VI	-	-	100
	PROJECT	30	4	VI	40	60	100
	READING CULTURE	10/Se mester	1	II-VI	-	-	-
	MOOC COURSES(Depa	-	Mini mum	-	-	_	

COURSE	Courses	HRS	CRS	Semester in which the course is offered	CIA Mks	ESE Mks	
	rtment Specific Courses/any other courses) * Students can opt other than the listed course from UGC-SWAYAM UGC / CEC		2 Credit s				
	TOTAL		22 +				

OFF CLASS PROGRAMMES

19UGVA ST1-Big Data Analytics

I B.Sc STATISTICS SEMESTER -I

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST1CC1	Basic Statistics	Lecture	6	4

COURSE DESCRIPTION

This course introduces the historical development of statistics, presentation of data, descriptive measures and fitting mathematical curves to the data.

COURSE OBJECTIVES

To enable the students to analyze the given data and make them solve simple real life problems related to descriptive measures in statistics.

UNIT -I COLLECTION OF DATA

(18HRS.)

Introduction – Primary and Secondary data – Methods of Collecting Primary data – Drafting the Questionnaire – Pretesting the Questionnaire – Specimen Questionnaire – Sources of Secondary data – Editing Primary and Secondary data – Precautions in the use of Secondary data.

UNIT -II CLASSIFICATIONAND TABULATION OF DATA (18HRS.)

Introduction – Meaning and Objectives of Classification – Types of Classification – Formation of a Discrete Frequency Distribution - Formation of a Continuous Frequency Distribution – Tabulation of data – Parts of a Table – General rules of Tabulation – Types of Tables.

UNIT -III DIAGRAMATICAND GRAPHIC PRESENTATION(18 HRS.)

Introduction – Significance of Diagrams and Graphs – General rules for Constructing Diagrams – Types of Diagrams – Graphs – Graphs of Frequency Distributions.

UNIT -IV MEASURES OF CENTRAL TENDENCY

(18 HRS.)

Introduction - Objectives of Averaging - Requisites of a Good Average - Types of Averages - Arithmetic Mean - Median - Mode - Geometric Mean - Harmonic Mean - Self Study.

UNIT -V MEASURES OF DISPERSION

(18 HRS.)

Introduction – Significance of Measuring Variation – Properties of a Good Measure of Variation- Methods of Studying Variation – Which Measure of Dispersion to use.

TEXT:

S.P.Gupta, *Statistical Methods*, Sultan Chand & Sons, Revised edition (2014).

Chapters: 3, 5, 6, 7, 8.

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor , Fundamentals of Mathematical statistics, Sultan Chand & Sons, Revised edition (2014).
- 2. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house, (2012).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Recognizes investigation, investigator, enumerator and enumeration and explain different methods of data collection.
CO 2	Identifies the need of Classification and Tabulation
CO 3	Construct and analyze graphical display to summarize data.
CO 4	Explain and evaluates various measure of central tendency
CO 5	Compute and interpret measure of centre and spread of data.

I B.Sc STATISTICS SEMESTER -I

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST1CC2	Probability Theory	Lecture	6	4

COURSE DESCRIPTION

This course introduces the concepts of functions and its properties, theorems related to random variables.

COURSE OBJECTIVES

To enable the students understand the concepts of random variable and distribution functions, expectation, conditional expectation and variance, generating functions, law of large numbers.

UNIT -ITHEORY OF PROBABILITY I

(18 HRS.)

Introduction – Basic Terminology – **Mathematical Probability – Statistical Probability – Subjective Probability – (**Self Study) –
Mathematical Tools – Axiomatic Approach to Probability.

UNIT -IITHEORY OF PROBABILITY II

(18 HRS.)

Extended Axiom of Addition- (Self Study) and Axiom of Continuity – Bayes Theorem – Geometric Probability.

UNIT -IIIRANDOM VARIABLES AND DISTRIBUTION FUNCTIONS(18 HRS.)

Introduction – Distribution Function – Discrete Random Variable – Continuous Random Variable – Two Dimensional Random Variables.

UNIT -IVMATHEMATICAL EXPECTATION

(18 HRS.)

Introduction – Mathematical Expectation – Expected Value of Function of a Random Variable – Properties of Expectation – Properties of Variance – Covariance – Some Inequalities Involving Expectation – Moments of Bivariate Probability Distributions – Conditional Expectation and Conditional Variance.

UNIT -V GENERATING FUNCTIONS AND LAW OF LARGE NUMBERS (18 HRS.)

Moment Generating Function – Cumulants – Characteristics Function – Inversion Theorem – Uniqueness Theorem of Characteristics Function – Necessary and Sufficient Condition for Independence of Random Variables in Terms of Characteristics Functions – Hally Bray Theorem – Continuity Theorem for Characteristics Functions – Chebychve's Inequality – Convergence in Probability.

TEXT:

S.C.Gupta and V.K.Kapoor, *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons, Revised edition (2014).

REFERENCES:

Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house (2012).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Identify from a probability scenario events that are simple, complementary, mutually exclusive, and independent.
CO 2	Recognize multiplication rule for two independent events, the addition rule for union of two events, and the complement rule.
CO 3	Describe the main properties of probability distribution and random variables.
CO 4	Construct discrete and continuous random variables
CO 5	Apply general properties of the expectation and variance operators

I B.Sc STATISTICS SEMESTER -I

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST1AC1	Calculus	Lecture	5	5

COURSE DESCRIPTION

This course covers differentiation and integration of functions of one variable.

COURSE OBJECTIVES

To enable the students to understand higher derivatives, curvature, singular points, envelopes, asymptotes, reduction formula, multiple integrals and Fourier series in calculus.

UNIT -IHIGHER DERIVATIVES AND CURVATURE (15HRS.)

 n^{th} Derivative of some standard functions- Leibnitz theorem- p-r equations - Curvature , centre and radius of curvature

UNIT -IIEVOLUTE, ENVELOPES AND MULTIPLE POINTS (15 HRS.)

Evolutes - Envelopes - Multiple points - classification of double points - cusps - nodes -conjugate points.

UNIT -III REDUCTION FORMULA

(15HRS.)

Reduction formula for $sin^n x$, $cos^n x$, $tan^n x$, $cot^n x$, $cosec^n x$, $sec^n x$, and $sin^m x cos^n x$.

UNIT -IVMULTIPLE INTEGRALS

(15HRS.)

Jacobian - (Self Study) – Double and Triple integrals

UNIT -V FOURIER SERIES

(15 HRS.)

Definition - Sine Series & Cosine Series.

TEXT:

S. Arumugam and A. ThangapandiIssac - *Calculus* (Differential and Integral Calculus) - New Gamma Publishing House (2012).

UNIT I: (PART I Sections – 2.12, 2.13, 3.3 and 3.4)

UNIT II: (PART I Sections – 3.5, 3.6 and 3.10)

UNIT III: (PART II Section 2.8)

UNIT IV: (PART I Section 3.9, PART II Sections 3.1, 3.2 and 3.3)

UNIT V: (PART II Chapter 5)

REFERENCES:

- 1. Narayanan and ManickavasagamPillai, *Calculus*, S.Viswanathan (Printers & Publishers) Pvt Ltd (2008).
- 2. Anit. M.Agarwal, *Differential Calculus*, MeerutArihantPrakashan (2008).
- 3. Shanthi Narayanan- *Differential Calculus*, ShyamLalChairtable Trust (1994).
- 4. Shanthi Narayanan, *Integral Calculus*, S.Chand and Company Ltd (1994).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Explain higher derivatives and apply Leibnitz theorem to find the $n^{\rm th}$ derivative of functions.
CO 2	Explain multiple points, Envelopes, nodes and conjugate points.
CO 3	Construct reduction formula for trigonometric functions.
CO 4	Define Jacobian, double & triple integrals and apply the knowledge of change of variables to solve the problems in double and triple integrals.

I B.Sc STATISTICS SEMESTER -II

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST2CC3	Descriptive Statistics	Lecture	6	4

COURSE DESCRIPTION

This course introduces measurement of relationship in terms of quantitative and qualitative data.

COURSE OBJECTIVES

This course imparts the knowledge of correlation, regression and association of attributes to students.

UNIT -ISKEWNESS, MOMENTS AND KURTOSIS

(18 HRS.)

Introduction – Tests of Skewness – Measures of Skewness – Moments – Kurtosis.

UNIT -IICORRELATIONANALYSIS I

(18 HRS.)

Introduction – Significance of the Study of Correlation – Correlation and Causation – Types of Correlation – Methods of studying Correlation – Graphic Method – **Karl Pearson's Coefficient of Correlation – Coefficient of Correlation – (**Self Study) and Probable Error.

UNIT -III CORRELATIONANALYSIS II

(18 HRS.)

Coefficient of Determination – Properties of the Coefficient of Correlation – Rank Correlation Coefficient.

UNIT -IVREGRESSION ANALYSIS

(18 HRS.)

Introduction – Uses of Regression Analysis – Correlation and Regression Analysis: A Comparison – Regression Lines – Regression Lines – Regression Equations – Regression Equations in case of Correlation Table – Standard Error of Estimate.

UNIT -V ASSOCIATION OF ATTRIBUTES

(18 HRS.)

Introduction –Difference between Correlation and Association – Notation and Terminology – Consistency of Data – Association and Disassociation – Methods of Studying Association – Association of Three Attributes.

TEXT:

S.P.Gupta, Statistical Methods, Sultan Chand & Sons, Revised edition (2014).

Chapters: 9, 10, 11, 12.

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, *Fundamentals of Mathematical statistics*, Sultan Chand & Sons, Revised edition (2014).
- 2. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house, (2012).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Evaluates and interprets the nature of skewness and kurtosis
CO 2	Identify the direction and strength of a correlation between two factors.
CO 3	Compute and interpret the spearman correlation coefficient.
CO 4	Calculate and interpret the coefficient of determination
CO 5	Recognize regression analysis applications for purpose of description and prediction.

I B.Sc STATISTICS SEMESTER -II

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST2CC4	Discrete Probability Distribution	Lecture	6	4

COURSE DESCRIPTION

This course introduces probability functions for random variables that are defined for different probabilistic situations.

COURSE OBJECTIVES

This course exposes students the various important discrete probability models and real life situations where these distributions provide appropriate models.

UNIT -IBERNOULLI AND BINOMIAL DISTRIBUTIONS (18 HRS.)

Moments of Bernoulli Distribution – Moments of Binomial Distribution – RecurrenceRelation for the Moments of Binomial Distribution – Factorial Moments of Binomial Distribution – Mean Deviation about Mean of Binomial Distribution – Mode of Binomial Distribution – Moment Generating Function of Binomial Distribution – Additive Property of Binomial Distribution – Characteristic Function of Binomial Distribution Cumulants of the Binomial Distribution – Recurrence Relation for Cumulants of Binomial Distribution – (Self Study) – Probability Generating Function of Binomial Distribution – Recurrence Relation for the Probabilities of Binomial Distribution.

UNIT -IIPOISSON DISTRIBUTION

(18 HRS.)

Moments of Poisson Distribution-Mode of Poisson Distribution - RecurrenceRelation for the Moments of Poisson Distribution - Moment Generating Function of Poisson Distribution - Characteristic Function of

Poisson Distribution - **Cumulants of Poisson Distribution - (**Self Study) - Additive Property of Independent Poisson Variates - Probability Generating Function of Poisson Distribution - Recurrence Relation for the Probabilities of Poisson Distribution.

UNIT -III NEGATIVE BINOMIAL DISTRIBUTION (18 HRS.)

Moment Generating Function of Negative Binomial Distribution - Cumulants of Negative Binomial Distribution - Poisson distribution as a Limiting case of Negative Binomial Distribution - Probability Generating Function of Negative Binomial Distribution - Deduction of Moments of Negative Binomial Distribution from those of Binomial Distribution.

UNIT -IVGEOMETRIC AND HYPERGEOMETRIC DISTRIBUTIONS (18 HRS.)

Moments of Geometric Distribution – Moment Generating Function of Geometric Distribution – Mean and Variance of the Hyper geometric Distribution – Factorial Moments of the Hyper geometric Distribution – Approximation to Binomial Distribution – Recurrence Relation for the Hyper geometric Distribution.

UNIT -V MULTINOMIAL AND POWER SERIES DISTRIBUTIONS (18 HRS.)

Moments of Multinomial Distribution— (Self Study)— Moment Generating Function of Power Series Distribution — Recurrence Relation for Cumulants of Power Series Distribution.

TEXT:

S.C.Gupta and V.K.Kapoor, *Fundamentals of Mathematical statistics*, Sultan Chand & Sons, Revised edition (2014).

REFERENCES:

- 1. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house, (2012).
- 2. S.P.Gupta, Statistical Methods, Sultan Chand & Sons, Revised edition (2014).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Recognize cases where the Binomial distribution could be an appropriate model.
CO 2	Able to apply the Poisson distribution to a variety of problems.
CO 3	Explore the key properties such as the moment generating function, cumulant of a negative binomial distribution.
CO 4	Understand and derive the formula for the geometric and hyper geometric probability mass function.

I B.Sc STATISTICS SEMESTER -II

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST2AC2	Algebra	Lecture	5	5

COURSE DESCRIPTION

This course introduces the concept of classical algebra to the students of Statistics

COURSE OBJECTIVES

To enable the students to learn the fundamentals of Algebra and this includes topics like binomial, exponential and logarithmic series and theory of equations.

UNIT -IBINOMIAL SERIES

(15 HRS.)

Summation and approximation using binomial Series.

UNIT -IIEXPONENTIAL AND LOGARITHMIC SERIES

(15 HRS.)

Exponential and logarithmic series (Proof not expected). **Summation** and approximation using exponential and logarithmic series— (Self Study).

UNIT -IIITHEORY OF EQUATIONS

(15 HRS.)

Introduction – remainder theorem - an equation of nth degree has exactly n roots - relation between the roots and coefficients-irrational roots – imaginary roots – Symmetric functions of the roots in terms of the coefficients. Sum of the powers of the roots (Newton's theorem)

UNIT -IVTRANSFORMATION OF EQUATIONS

(15 HRS.)

Transformation of equations –reciprocal roots - reciprocal equations – properties of equations – removal of terms – transformation in general

UNIT -V THE NATURE OF THE ROOTS OF THE EQUATION(15 HRS.)

Descartes rule of signs – Rolles' theorem – multiple roots – solutions of numerical equations - Newtons method and Honers method to solve algebraic equations.

TEXT:

T. K. ManicavachagomPillay, T Natarajan and K. S. Ganapathy, *Algebra* Volume I, S. Viswanathan (Printers and Publishers), Pvt. Ltd. (2013).

UNIT I- Chapter 3: Sections 10, 12& 14,

UNIT II- Chapter 4: Sections 1-9, 11-12

UNIT III, IV, V - Chapter 6: Sections 1-30

REFERENCES:

- 1. P.R.Vittal and V.Malini, *Algebra and Trigonometry*, Margham Publications (2008).
- 2. Sudhir K Pundir Singh, *Algebra and Trigonometry*, MeeratPragathirakashan (2003)

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Define binomial series, logarithmic and exponential series and solve problems.
CO 2	Identify relations between the roots and co-efficients of equations.
CO 3	Explain the transformations of equations
CO 4	Recognize the important methods in finding roots of the given

		polyno	omial.						
С	O 5	Solve metho	O	equations	using	Newton's	method	and	Horner's

I B.Sc STATISTICS SEMESTER - I &II

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST1NME / 19ST2NME	of Statistics	Lecture	2	2

COURSE DESCRIPTION

This course is designed to make the students learn the basics of statistics

COURSE OBJECTIVES

To enable the students understand the origin and the need of statistics and the statistical data.

UNIT - IINTRODUCTION

(6 HRS.)

Origin, meaning and functions of statistics – general uses - relation with other disciplines-limitations and misuses of statistics.

UNIT -IICOLLECTION OF DATA

(6 HRS.)

Methods of collection: Complete enumeration – sample survey

UNIT -IIISCRUTINY OF DATA

(6 HRS.)

Primary data - methods of collection - secondary data sources.

UNIT -IVMEASURES OF CENTRAL TENDENCY

(6 HRS.)

Arithmetic mean - weighted mean - median - mode

UNIT -V MEASURES OF DISPERSION

(6 HRS.)

Range- standard deviation

TEXT:

S.P.Gupta, *Statistical Methods*, Sultan Chand & Sons, Revised edition (2014).

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, *Fundamentals of Mathematical Statistics*-Sultan Chand & Sons, Revised edition (2002).
- 2. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house, (2006).

COURSE OUTCOMES

NO.	COURSE OUTCOMES									
CO 1	Summarize the origin of statistics and its relation with other disciplines.									
CO 2	Identify the method of collecting the statistical data.									
CO 3	Classify the primary and secondary data.									
CO 4	Find the mean, median and mode for the given distribution and analyse									
CO 5	Explain the various measures of dispersion and analyse									

II B.Sc STATISTICS SEMESTER -III

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST3CC5	Distribution Theory - II	Lecture	6	4

COURSE DESCRIPTION

This course is designed toexpose the students various important continuous probability models

COURSE OBJECTIVES

To enable the students understand the continuous probability distribution and real life situations where these distributions provide appropriate models.

UNIT -INORMAL DISTRIBUTION

(18 HRS.)

Normal distribution as a limiting form of binomial distribution-chief characteristics of the normal distribution – mode, median, moment generating function of normal distribution – cumulant generating function of normal distribution – a linear combination of independent normal variates – points of inflexion of normal curves – mean deviation about mean for normal distribution – area property – error function – importance of normal distributions – fitting of normal distribution

UNIT -IIRECTANGULAR, BETA AND GAMMA DISTRIBUTIONS(18 HRS.)

Moments of rectangular distribution -m.g.f of rectangular distribution - characteristics function of rectangular distribution - mean deviation about mean of rectangular distribution - m.g.f of gamma distribution - cumulant generating function of gamma distribution - additive function of gamma distribution - beta distribution of first kind - beta distribution of second kind.

UNIT -III EXPONENTIAL AND CAUCHY DISTRIBUTIONS (18 HRS.)

Moment generating function of exponential distribution - characteristic function of Cauchy distribution - moments of Cauchy distribution - (Self Study).

UNIT -IVSAMPLING DISTRIBUTION (CHI-SQUARE)(18HRS.)

Introduction – derivation of the χ^2 distribution – moment generating function of the χ^2 distribution – some theorems on χ^2 distribution – linear transformation – applications of χ^2 distribution.

UNIT -V SAMPLING DISTRIBUTION (t, F) (18 HRS.)

Introduction – student's 't' distribution – applications of 't' distribution – distribution of sample correlation coefficient when population correlation coefficient $\rho=0$ - f distribution – applications of f distribution – relation between t and f distributions – relation between f and χ^2 distribution.

TEXT:

S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Revised edition (2014).

Chapters: 9, 15, 16

REFERENCES:

- 1. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house, (2012).
- 2. S.P.Gupta, *Statistical Methods*, Sultan Chand & Sons, Revised edition (2014).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Recognize cases where the normal distribution could be an appropriate.
CO 2	Understand and derive the moments, moment generating functions, characteristic functions of rectangular, beta and gamma distribution.
CO 3	Explore the key properties such as the moment generating function and cumulants of exponential and Cauchy distribution
CO 4	Recall the definition of a t statistic in terms of statistics of a sample from a normal distribution
CO 5	State and apply the definitions of the t, F and Chisquare distributions in terms of the standard normal.

II B.Sc STATISTICS SEMESTER -III

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST3CC6	Sampling Theory	Lecture	6	4

COURSE DESCRIPTION

This course is introduced to the students to impart the basic knowledge of statistical sampling concepts.

COURSE OBJECTIVES

To enable the students understand the concept of statistical sampling and to make them conduct sample survey independently by selecting the suitable sampling techniques.

UNIT -ISAMPLE SURVEY

(18 HRS.)

Census and Sample surveys - principle steps in sample survey - principles of sample survey - sampling and non-sampling errors - advantages of sampling over complete census— (Self Study)- limitations of sampling.

UNIT -IISIMPLE RANDOM SAMPLING

(18 HRS.)

Sampling from finite population - **simple random sampling with and without replacement-** (Self Study)- procedure of selecting a random sample - unbiased estimate, variance of the estimates -finite population correction - estimation of standard error from a sample.

UNIT -III STRATIFIED RANDOM SAMPLING

(18HRS.)

Stratified random sampling - properties of the estimates - unbiased estimates of the mean and variance of the estimates of the mean-optimum and proportional allocations - relative precision of a stratified sampling and

simple random sampling - estimation of gain in precision in stratified sampling.

UNIT -IVSYSTEMATIC SAMPLING

(18 HRS.)

Systematic sampling - estimate of mean and variance of the estimated mean - comparison of simple and stratified with systematic random sampling, systematic sampling with cluster sampling, methods for populations with linear trend.

UNIT -V RATIO ESTIMATOR

(18 HRS.)

Ratio estimators: Ratio estimates, variance of the ratio estimates - Bias of the ratio estimates. Regression estimators: Linear regression estimate regression estimates with pre assigned b-regression estimates when b is computed from the sample.

TEXT:

- 1. S.C.Gupta, and V.K. Kapoor, *Fundamentals of Applied Statistics*, Sultan Chand & Co., 11th edition (2014).
- 2. William G. Cochran, Sampling Techniques, John Wiley Sons (1999).

REFERENCES:

- 1. Daroga Singh and F.S.Choudary, *Theory and Analysis of Sample Survey Designs*, New age international publishers (1986).
- 2. P.V. Sukhatame and B.V.Sukhatame, *Sampling Theory of Surveys with Applications*, ISAS publishers, 3rd Edition (1957).
- 3. S.Sampath, Sampling Theory and Methods, Narosa Publishing House (2001).

COURSE OUTCOMES

NO.	COURSE OUTCOMES				
CO 1	Illustrate census and sampling and their advantages and disadvantages				
CO 2	Recognizes probability and non-probability sampling				
CO 3	Identifies sampling and non-sampling errors.				
CO 4	Differentiates the SRSWOR, SRSWR, methods of SRS – lottery method and random number table method.				
CO 5	Describes different kinds of sampling – simple random sampling, systematic sampling, stratified sampling and cluster sampling				

II B.Sc STATISTICS SEMESTER -III

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST3AC3	Linear Programming	Lecture	5	5

COURSE DESCRIPTION

The course provides appropriate methods for the efficient computation of optimal solutions to problems which are modelled by objective function and linear constraints.

COURSE OBJECTIVES

This course enable the students convert real life problems into a Mathematical problem and to solve them using different techniques like graphical method, simplex method, Big – M method, Two - phase method and dual simplex method.

UNIT -IMATHEMATICAL FORMULATION OF LPP (15 HRS.)

Mathematical formulation – classification - graphical solutions of lpp-simple examples of lpp - slack and surplus variables - standard form of lpp- (Self Study).

UNIT-IISIMPLEX METHOD

(15 HRS.)

Definition of objective function - linear and non-negative constraints - feasible solution - basic feasible solution - optimum basic feasible solution - degenerate solution - evaluation and net evaluation - unbounded solutions and conditions for optimality of a feasible solution in terms of net evaluations (no proof) - pivotal element - computational procedure of the simplex method - tie for entering basis vector and leaving basis vector-solution using artificial variables.

UNIT -III METHOD AND TWO PHASE METHOD

(15 HRS.)

Charne's method of penalities and two phase simplex method - restricted and unrestricted variables - inverse of a matrix using simplex method

UNIT -IVTRANSPORTATION PROBLEM

(15 HRS.)

Mathematical formulation - existence of feasible solution - feasible solution by north west corner rule - matrix minima method - Vogel's approximation method -optimal solution to a TP by modified distribution method - degeneracy in TP -unbalanced TP.

UNIT -V ASSIGNMENT PROBLEM

(15HRS.)

Mathematical formulation - assignment algorithm rule for finding optimal assignment - unbalanced AP - travelling salesman problem as an AP.

TEXT:

KantiSwarup, P.K.Gupta and Man Mohan, *Operation Research*, Sultan Chand and sons, New Delhi - 11th Edition (2003).

REFERENCES:

- 1. P.K.Gupta and Man Mohan, *Problems in Operation Research*, Sultan Chand and sons, New Delhi, 11th Edition (2007).
- 2. Prem Kumar Gupta and D.S.Hira, *Operations Research*, S.Chand and Company, Ram Nagar, New Delhi, Edition (2007).

COURSE OUTCOMES

NO.	COURSE OUTCOMES					
CO 1	Formulate linear programming problems and solve by graphical method					
CO 2	Classify simplex, two phase and Big - M method to solve linear					

	programming problems
CO 3	Illustrate Duality in Linear programming
CO 4	Recognize and formulate transportation, assignment problems and find the optimal solution

II B.Sc STATISTICS SEMESTER -III

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST3SB1	Practical Statistics I		2	2

COURSE DESCRIPTION

The course provides problems related to measure of central tendency, measure of dispersion, and measures of association of attributes.

COURSE OBJECTIVES

To expose the students the analysis of statistical techniques in real life situations.

- 1. Problems based on measure of central tendency
- 2. Problems based on measure of dispersion..
- 3. Problems based on moments, skewness and kurtosis
- 4. Computation of Karl Pearson correlation co-efficient.
- 5. Correlation coefficient for a bivariate frequency distribution.
- 6. Concurrent deviation
- 7. Rank correlation.
- 8. Regression Equations..
- 9. Computation of various measures of associations of attributes.

TEXT:

1. S.C.Gupta and V.K.Kapoor, *Fundamentals of Mathematical statistics*, Sultan Chand & Sons, Revised edition (2002).

COURSE OUTCOMES

NO.	COURSE OUTCOMES
CO 1	Calculate measure of central tendency, measure of dispersion, skewness and kurtosis.
CO 2	Compute correlation, regression and measures of association of attributes.

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST4CC7	Statistical Inference - I	Lecture	6	4

COURSE DESCRIPTION

This course introduces the concepts of statistical estimation theory.

COURSE OBJECTIVES

To enable the students understand the various statistical estimation methods of parameters and its applications in solving real life problems

UNIT - IPOINT ESTIMATION THEORY

(18 HRS.)

Parametric estimation: estimator - characteristics of an estimator - consistency and unbiasedness of an estimator - Cramer-Rao inequality. Efficiency-asymptotic efficiency of an estimator- estimators based on sufficient statistics- Neyman's factorization theorem (without proof) - Rao-Blackwell theorem

UNIT -IIMETHODS OF POINT ESTIMATION-I

18 HRS.)

Methods of point estimation - **method of Maximum Likelihood Estimator (MLE) - (**Self Study)- Properties of MLEs (without proof) - Problems based on MLEs.

UNIT-IIIMETHODS OF POINT ESTIMATION-II

(18 HRS.)

Method of moments – problems-method of least squares - method of minimum Chi-square-method of minimum variance-Minimum Variance Unbiased Estimation (MVUE)-Problems based on MVUE.

UNIT -IV INTERVAL ESTIMATION-I

(18 HRS.)

Concept of interval estimation - interval estimation in case of large samples- confidence interval for proportions, means and variances based on normal distribution.

UNIT -V INTERVAL ESTIMATION-II

(18 HRS.)

Interval estimation for small samples – confidence intervals for means, variances, correlation coefficient and regression coefficient based on Chi square, Student's t, and f distributions.

TEXT:

S.C. Gupta and V.K.Kapoor, *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons, New Delhi, 11th Edition (2002).

REFERENCES:

- 1. M.Kendall and A.Stuart, *The advanced theory of Statistics*, Vol. II, Charles Griffin, (1961).
- 2. V.K.Rohatgi, Statistical Inference, John Wiley and sons (1984).
- 3. R.V Hogg, A.T.Craig. and Tannis, *Introduction to Mathematical Statistics*, Prentice Hall, England (1995).

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

NO.	COURSE OUTCOMES								
CO 1	Describe how to estimate population parameters with consideration of error								
CO 2	Compute a point estimate of the population mean								
CO 3	Interpret a confidence interval and confidence level.								
CO 4	Conduct inference about the difference in the means of two Normal distributions, including cases where the underlying variances are known or unknown.								

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST4CC8	Applied statistics	Lecture	6	4

COURSE DESCRIPTION

This course provides some of the applications of statistics which includes topics such as curve fitting, time series, index numbers, interpolation and extrapolation, birth and death rates.

COURSE OBJECTIVES

To enable the students understand and appreciate the applications of Statistics

UNIT -ICURVE FITTING

(18 HRS.)

Fitting of a straight line, **second degree parabola-** (Self Study), exponential and power curves.

UNIT -IIANALYSIS OF TIME SERIES

(18 HRS.)

Components of a time series- measurements of trends.

UNIT -III INDEX NUMBERS

(18 HRS.)

Classification and methods-Tests of adequacy- Chain index numbers - **consumer price index numbers-** (Self Study).

UNIT -IVINTERPOLATION AND EXTRAPOLATION

(18 HRS.)

Interpolation – Methods- Extrapolation

UNIT -V VITAL STATISTICS

(18 HRS.)

Introduction – Vital Statistics Defined – Uses of Vital Statistics – Methods of Obtaining Vital Statistics – Measurement of Fertility – Reproduction Rates. Crude Death Rate – Specific Death Rates –

Standardized Death Rates – Infant Mortality Rate – Neo-Natal Mortality Rate – Maternal Mortality Rate – Natural Increase Rate – Net Migration Rate – Vital Index – Life Tables.

TEXT:

- 1. S. Arumugam and Thangapandi Isaac, *Statistics*, New Gamma publishing house (2006).
- 2. S.P.Gupta, *Statistical Methods* Sultan Chand & Sons, Revised edition (2014).

REFERENCES:

S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Revised edition (2002).

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

NO.	COURSE OUTCOMES
CO 1	Construct curve fitting.
CO 2	Define and explain analysis of time series and index numbers.
CO 3	Classify interpolation and extrapolation
CO 4	Evaluate birth, death rate, infant mortality and neo natal mortality rate.

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST4AC4	Linear Algebra	Lecture	5	5

COURSE DESCRIPTION

This course will focus on matrix as linear transformations relative to a basis of a vector space.

COURSE OBJECTIVES

To enable the students to understand matrix and vector space concepts which can be applied in Graph Theory, Linear Programming, Physics and Chemistry etc.,

UNIT -IVECTOR SPACES

(15 HRS.)

Definition and Examples – Subspaces – Linear Transformation – Span of a set

UNIT -IIBASIS AND DIMENSION

(15 HRS.)

Linear Independence – Basis and Dimension – Rank and Nullity - Matrix of a Linear Transformation

UNIT -IIIINNER PRODUCT SPACES

(15 HRS.)

Definition and Examples - Orthogonality - Orthogonal Complement

UNIT -IVTHEORY OF MATRICES

(20 HRS.)

Algebra of Matrices – Types of Matrices – The Inverse of a Matrix – Elementary Transformations. Rank of a Matrix – Simultaneous Linear Equations – Characteristic Equation and Cayley Hamilton Theorem – Eigen Values and Eigen Vectors (Self Study).

UNIT -V BILINEAR FORMS

(10HRS.)

Bilinear forms - Quadratic forms

TEXT:

S. Arumugam and A.ThangaPandi Isaac*Modern Algebra*, Scitech Publications (India) Private Limited (2003). Chapters 5,6,7,8.

REFERENCES:

- 1. A.R.Vasishtha, *Modern Algebra*, Krishna Prakashan Media (P) Ltd.,Delhi (2006).
- 2. N.S.Gopalakrishnan, *University Algebra*, New Age International Limited- II Edition (2005).

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

NO.	COURSE OUTCOMES
CO 1	Define Vector Space and explain its various concepts
CO 2	Illustrate Inner Product Spaces
CO 3	Define basic concepts of matrices and solve linear equations
CO 4	Appraise Eigen Value and Eigen Vectors of matrices
CO 5	Describe bilinear forms and quadratic forms

For those who joined in 2019 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	19ST4SB2	Practical Statistics II	Lectiire	2	2

COURSE DESCRIPTION

The course provides an application related to the concepts of sampling theory, & sampling distribution for large & small samples.

COURSE OBJECTIVES

To expose the students analyze the statistical techniques in real life situations

- 1. Fitting of Binomial Distribution
- 2. Fitting of Poisson Distribution
- 3. Fitting of Normal Distribution
- 4. Fitting of Exponential Distribution
- 5. Fitting of Cauchy Distribution
- 6. Sampling Theory Simple Random Sampling, Stratified Random Sampling, Systematic Random Sampling
- 7. Sampling Distribution for Large Sample
- 8. Sampling Distribution for Small sampling

COURSE OUTCOMES

On the successful completion of the course, students will be able to:

NO.	COURSE OUTCOMES					
CO 1	Interpret the fitting of discrete and continuous distributions.					
CO 2	Calculate the sampling distributions for large and small samples.					

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5CC9	Statistical Inference - II	Lecture	6	5

COURSE DESCRIPTION

The course provides the basics of hypothesis testing with emphasis on some commonly encountered hypothesis tests in statistical data analysis.

COURSE OBJECTIVES

To enable the students have a better understanding on testing of hypothesis in statistical data analysis.

UNIT -ITESTING OF HYPOTHESIS

(20 HRS.)

Statistical Hypothesis – Simple and composite hypothesis, Null and alternative Hypothesis, Two types of errors, statistical test, size of a test, level of significance, critical region, power of the test- Steps in solving testing of hypothesis problem - Most powerful test (definition) – Neymann-Pearson lemma – Simple problems based on Binomial, Poisson, Uniform, Normal & exponential distributions.

UNIT -IIUNIFORMLY MOST POWERFUL TESTS (20 HRS.)

Power function and power curve(definition) – one parameter exponential family, Monotone likelihood Ratio property- Best critical region - Simple problems based on BCR - UMP tests for the parameters of univariate Normal and Exponential distributions.

UNIT -III LIKELIHOOD RATIO TEST (LRT) (20 HRS.)

Definition of LRT -Parameter space - Properties of LRT tests (Statements only) - Theorem based on LRT - Test for the mean of normal

population - Test for the variance of normal population - Test for equality of means of 2 independent normal populations - Test for equality of variances of 2 independent normal populations - (Self Study).

UNIT -IVNON-PARAMETRIC TESTS

(20 HRS.)

Sign test, Wilcoxon signed rank test, Median test, Mann-Whitney U test, Runs test- test for randomness.

UNIT -VSEQUENTIAL PROBABILITY RATIO TEST (20 HRS.)

Sequential Probability Ratio Test – Definition and properties of SPRT (without proof), simple problem based on OC and ASN for Binomial, Bernoulli, Poisson & Normal distributions.

TEXT:

- 1. S.C Gupta and V.K.Kapoor, *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons Pvt. Ltd. New Delhi (2002).
- 2. S.P. Gupta, *Fundamentals of Statistics*, Sultan Chand & Sons Pvt. Ltd. New Delhi.

- 1. A.M.Mood, F.A.Graybill and D.C.Boes, *Introduction to the theory of Statistics*, McGraw Hill (1974).
- 2. R.V.Hogg and A.T.Craig, *Introduction to mathematical statistics*, 3rd edition (1972).
- 3. A.M.Goon, M.K.Gupta and B.Das Gupta, *An outline of statistical theory*, Volume I, 6th revised edition World Press ltd, Calcutta (1980)
- 4. P.G.Hod, *Introduction to mathematical statistics*, Asia publishing house (1971).
- 5. V.K.Rohatgi, An introduction to probability theory and Mathematical Statistics, Wiley Eastern (1984).
- 6. MarekFisz, *Probability theory and Mathematical Statistics*, John Wiley (1961).
- 7. M.R.Spiegal, *Theory and problems of probability and statistics*, Schaum's outline series, McGraw Hill (1982).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5CC10	Design of Experiment	Lecture	6	5

COURSE DESCRIPTION

This course is introduced to the students to understand the fundamental principles of experimental designs.

COURSE OBJECTIVES

To enable the students understand the fundamentals of experimental designs, analysis tools and techniques, interpretation and applications.

UNIT -IFUNDAMENTAL PRINCIPLES OF EXPERIMENTS (20 HRS.)

Terminology in Experimental statistics – Principles of experimental design - Replication, Randomization and Local Control Techniques

UNIT -IILINEAR MODEL AND ITS CLASSIFICATIONS I (20 HRS.)

Completely Randomized Design (CRD) and its analysis-Randomized Block Design (RBD) – (Self Study)andits analysis - Latin Square Design (LSD)– (Self Study)and its analysis.

UNIT -III ANALYSIS OF VARIANCE

(20 HRS.)

Definition – Assumption – One way classification – Two way classification (one observation per cell) - Two way classification with m observation per cell

UNIT -IVLINEAR MODEL AND ITS CLASSIFICATIONS II (20 HRS.)

Missing plot technique – Meaning – Analysis of missing plot design (Fisher's Rule) –Analysis of RBD with one missing observation - Analysis of

RBD with two missing observation - Analysis of LSD with one missing observation

UNIT -V FACTORIAL EXPERIMENTS

(20 HRS.)

Advantages of factorial experiment – Definition 2^2 , 2^3 and 2^n factorial experiments and their analysis – Confounding-Partial and Complete confounding in 2^3 - Split plot design and its analysis, BlBD- definition and parameters .

TEXT:

1. S.C. Gupta and V.K. Kapoor, *Fundamentals of Applied Statistics*, Sultan Chand & Sons (2007).

- 1. D.Montgomery, Design of Experiments, John Wiley and Son (2009).
- 2. M.N.Dass and N.C.Gin, *Design and Analysis of Experiments*, Wiley Eastern, New Delhi (1986)
- 3. Kempthorne, *Design and Analysis of Experiments*, John Wiley. New York (1956).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5CC11	Computer Programming in C	Lecture	6	5

COURSE DESCRIPTION

This course provides skills in designing and writing simple programs in C.

COURSE OBJECTIVES

To enable the students to learn the basic concepts of data input, output, operators, expressions, controlstatements, arrays, handling of strings and user – defined functions. to write C programs,

UNIT -IC FUNDAMENTALS, OPERATORS AND EXPRESSION (20 HRS.)

Character Set - C Tokens - Keywords and Identifiers - Constants - Variables - Data types - Declaration of Variables - Assigning Values to Variables - Defining Symbolic Constants - Operators & Expressions: Introduction - Arithmetic of operators - Relational operators - Logical operators - Assignment operators - Increment and decrement operators - Conditional operator - Bitwise operators - Special operators - (Self Study) - Arithmetic expressions - Evaluation of expressions - Precedence of arithmetic operators - Some computational problems - Type conversions in expressions - Operator precedence and associativity - Mathematical functions.

UNIT -II DATA INPUT, OUTPUT & CONTROL STATEMENTS (20 HRS.)

Reading a character – Writing a character – Formatted input – Formatted output - Decision Making and Branching: IF Statement – the IF ELSE statement – Nesting of IF..ELSE statements – The ELSE IF ladder –

The switch statement - The ?: Operator - the GOTO statement - Decision Making and Looping : The WHILE statement - the DO statement - the FOR statement - Jumps in loops

UNIT -III ARRAYS& HANDLING OF STRINGS (20 HRS.)

One Dimensional Arrays – Two Dimensional Arrays – Initializing Two Dimensional Arrays – Handling of Character Strings: Declaring and Initializing String Variables – Reading String from Terminal – Writing Strings to Screen – Arithmetic Operations on Characters – Putting Strings together – Comparison of two Strings – String Handling Functions – Table of Strings

UNIT IV: USER - DEFINED FUNCTIONS & POINTERS (20 HRS.)

Need for User-Defined Functions – A Multi-function Program – Form of C Functions – Return Values and their Types – Calling a Function – Category of Functions – No Arguments and No Return Values – Arguments but No Return Values – Arguments with Return Values – Handling of Non-Integer Functions – Nesting of Functions – Recursion – Functions with Arrays – the scope and lifetime of variables in functions. Pointer: Understanding Pointers – Accessing the Address of a Variable – Declaring and Initializing Pointers – Accessing a Variable through its Pointer – Pointer Expressions – Pointer Increment and Scale Factor – Pointers and Arrays.

UNIT V: STRUCTURES & FILES (20 HRS.)

Structure definition – Giving values to members – Structure initialization – Comparison of structure variables – Arrays of structures – Arrays within structures – Structures within structures – Structures and functions –Unions – Size of structures – Bit fields. File Management in C: Defining and opening a file-closing a file-Input / Output operations on files-Error handling during I / O operations-Random access to files-Command line arguments.

Text Book:-

Programming in ANSI C by E. Balagurusamy, Tata McGraw-Hill Publishing Company Ltd. - 2000

Chapters: 2 to 10 excluding section 7.5 (Multidimensional Arrays),

Chapters 11: sections 11.1-11.8 and Chapter 12.

Reference Books:-

1) Theory and problems of programming with C - Byron S. Gotfried (Schaums Series)The C programming language - Kernighan & Ritchil.

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5CCP1	C Practical	Practical	2	2

- 1. To find the area of a square
- 2. To find the area of a circle
- 3. To find the area of a triangle
- 4. To find Simple interest
- 5. Solving Quadratic equations
- 6. Checking primes
- 7. Arranging numbers in ascending order
- 8. Reversing digits of a number
- 9. Finding the values of ncr, npr.
- 10. Palindrome
- 11. Matrix addition
- 12. Matrix multiplication
- 13. Transpose of a matrix
- 14. Trace of a matrix
- 15. Alphabetizing names
- 16. Mean and Standard deviation
- 17. To find Correlation Coefficient
- 18. Straight line fitting by the method of least squares
- 19. To print n th Fibonacci number
- 20. To read a series of words form a terminal

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5ME1	Real Analysis	Lecture	5	5

COURSE DESCRIPTION

This course introduces the basic concepts in analysis and to enable the students understand fundamental ideas and theorems in analysis.

COURSE OBJECTIVES

To enable the students understand the basic concepts of sequences and series, connectedness and compactness and proof techniques.

UNIT -I REAL VALUED FUNCTIONS AND REAL SEQUENCE (15 HRS.)

Real valuedfunctions - equivalence - countability- real numbers-(Self Study)- least upper bound- definition of sequence and subsequence - limit of a sequence.

UNIT -IICONVERGENTAND DIVERGENT SEQUENCES (15 HRS.)

Convergent sequences –divergent sequences-bounded sequencesmonotone sequences- operations on convergent sequences- operations on divergent sequences- Cauchy sequences

UNIT -III SERIES OF REAL NUMBERS

(15 HRS.)

Series- convergence and divergence of series – series with non-negative terms – alternating series- conditional convergence and absolute convergence- test for absolute convergence

UNIT -IV LIMITS AND METRIC SPACES

(15 HRS.)

Limit if a function on the real line- metric spaces- limit in metric spacesfunctions continuous on a metric space- functions continuous on the real line

UNIT -V CONNECTEDNESS, COMPLETENESS AND COMPACTNESS(15 HRS.)

Open sets- closed sets- more about open sets- connected setsbounded sets- complete metric spaces- compact metric spaces

TEXT:

Richard R. Goldberg, *Methods of Real Analysis*, Oxford & IBH Publishing co. Pvt. Ltd.

- 1. S. Arumugam and A. ThangapandiIssac, Modern Analysis
- 2. Copson, Metric spaces, Universal book stall, New Delhi (1989).
- 3. Walter Rudin, *Mathematical Analysis*, MC-craw hill international, Third edition.

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5ME2	Multivariate Analysis	Lecture	5	5

COURSE DESCRIPTION

The course covers multivariate normal distribution, hotelling T² statistics, multivariate classification and discrimination analysis, principal components and cluster analysis.

COURSE OBJECTIVES

To derive statistical inference based on multivariate statistical analysis.

UNIT -I MULTIVARIATE NORMAL DISTRIBUTION (15 HRS.)

Multivariate normal distribution and its properties - Maximum Likelihood Estimators of parameters, distribution of sample mean vector - (Self Study), sample dispersion matrix.

UNIT -IIPARTIAL AND MULTIPLE CORRELATION COEFFICIENTS (15 HRS.)

Partial and multiple correlation coefficients - Null distribution - Application in testing. Null distribution of Hotelling's T2 statistics. Application in tests on mean vector for one and more multivariate normal populations and also on equality of the components of a mean vector in a multivariate normal population

UNIT -III CLASSIFICATION AND DISCRIMINATION (15 HRS.)

Classification and discrimination procedures for discrimination between two multivariate normal populations – Linear Discriminant function, Mahalanobis Distance, tests associated with Discriminant functions, probabilities of misclassification and their estimation, classification into more than two multivariate normal populations.

UNIT -IVPRINCIPAL COMPONENT ANALYSIS

(15 HRS.)

Principal component Analysis, Canonical variables and canonical correlation, clustering-similarity measures- hierarchical algorithms- Single Linkage, Non-hierarchical Clustering

UNIT -V CONTINGENCY TABLES

(15 HRS.)

Contingency Tables, Correspondence Analysis for Two Dimension Contingency Table.

TEXT:

- 1. T.W. Anderson, *An Introduction To Multivariate Statistical Analysis*, 2nd Edition Wiley (1983).
- 2. R.Johnson and Wichern Applied Multivariate Statistical Analysis, Pearson, 6th edition (2008).

- 1. Brain S. Everitt and Graham Dunn, Applied Multivariate Data Analysis, 2nd Edition (2001)
- 2. Neil H.Timm, Applied Multivariate Analysis, Springer (2002).
- 3. Verlag Dallas E. Johnson, *Applied Multivariate Methods For Data Analysts*, Duxbury Press (1998).
- 4. William.R.Dillon and Mathew Goldstein *Multivariate Analysis Methods* and *Applications*, John Weily (1984).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5SB3	Practical Statistics III	Practical	2	2

COURSE DESCRIPTION

The course provides an application based on MLEs, analysis of time series, index numbers and vital statistics & cure fitting.

COURSE OBJECTIVES

To expose the students to the analysis of statistical techniques in real life situations.

- 1. Confidence interval for proportions means and variances based on Normal distribution.
- 2. Confidence intervals for means, variances, correlation coefficient
- 3. Problems based on MLEs.
- 4. Fitting of a straight line, second degree and Parabola, exponential
- 5. Analysis of Time Series
- 6. Index Numbers Chain index numbers-consumer price index numbers
- 7. Interpolation and Extrapolation
- 8. Vital Statistics

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST5SB4	Statistical software – SPSS	Practical	2	2

COURSE DESCRIPTION

The course is introduced to learn a programming language which helps to handle all aspects of data analysis using statistical software SPSS.

COURSE OBJECTIVES

To expose the students on the applications of statistical analysis using SPSS

- 1. Diagrammatic Representation Bar Chart, Pie Diagram
- 2. Construction of Discrete and Continuous Frequency Tables from raw data
- 3. Graphical Representation Histogram, Box- Whiskers plot
- 4. Descriptive Statistics
- 5. Simple correlation, Rank correlation,
- 6. Regression Fitting of Poisson distribution
- 7. Fitting of Normal distribution
- 8. Parametric tests Means, Variances and Proportions
- 9. Chi square test for goodness of fit
- 10. Chi square test for independence samples
- 11. Non- Parametric tests Sign test, Wilcoxon test, Mann-Whitney U test, Median test, Run test, Kolmogorov Smirnov one sample test, Kruskal Wallis
- 12. ANOVA one way and two way
- 13. Design of Experiment CRD, RBD, LSD
- 14. Factorial Experiment 2^22^3 experiments with total and partial confounding.

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6CC12	Statistical Quality Control	Lecture	5	4

COURSE DESCRIPTION

This course is designed to introduce students to statistical quality control emphasizing those aspects which are relevant for SQC's practical implementation

COURSE OBJECTIVES

. To introduce the students the basics of Statistical Quality Control and to enable them describe quality characteristics and relationships

UNIT-1STATISTICAL QUALITY CONTROL

(15 HRS.)

Basis of Statistical Quality Control - Definition - Benefits - Process control and Product control - Control Limits , Specification Limits and tolerance Limits - Control Charts - Control Limits - **Tools for Statistical Quality Control-** (Self Study) - application of theory of runs in quality control.

UNIT - II CONTROL CHARTFOR VARIABLES

(15 HRS.)

Control chart for variables – The General theory of Control Chart – **Definition of Control Chart – Learning Outcomes of the Control Charts–** (Self Study)- \bar{X} and R Charts – Control limits for \bar{X} Chart – Control limits for R Chart - Interpretation of control charts X and R. – σ chart – Basis of sub grouping – plotting X and R results – determining the trial control limits

UNIT - III CONTROL CHART FOR ATTRIBUTES

(15 HRS.)

Control chart for attributes –Control chart for fraction defective (p-chart) – Control chart for number of defectives (d-chart) – Interpretation of p chart –Control chart for number of defects per unit (c-chart) – c- charts for variable sample size – Applications of c-chart

UNIT -IV SAMPLING PLANS

(15 HRS.)

Acceptance of sampling plans for attributes - Producer's risk and consumer's risk - concepts of AQL, LTPD, AOQ, AOQL, ATI and ASN - single and double sampling plans - OC, AOQ, ATI curves for single - OC, ASN, ATI curves for Double sampling plans. - Single sampling vs Double sampling plans - Sequential sampling plan.

UNIT -V RELIABILITY

(15 HRS.)

Reliability: Definition of reliability – Basic elements of reliability –Bath tub curve - Achievement of reliability – Designing for reliability – measurement an of reliability – cost of reliability – maintenance and reliability – MTBF — MTTR – Hazard analysis –MTTF –quality and reliability – Reliability of series , parallel and mixed systems.

TEXT BOOKS:

- 1. V.K.Kapoor, and S.P.Gupta, *Fundamentals of applied statistics*, Sultan Chand and sons (1978).
- 2. M. Mahajan, Statistical Quality Control (2005).

REFERENCE BOOKS:

- **1.** E.L. Grant, and R.S. Laven Worth, *Statistical Quality Control*, McGraw Hill.
- **2.** R.C.Gupta, Statistical Quality Control (1974).
- **3.** D.C.Montgomery, *Introduction to Statistical Quality Control*, John Waley& Sons (1983).
- **4.** S.K.Ekambaram, *Statistical basis of Acceptance sampling*, Asia Publishing House(1963).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6CC13	Stochastic Processes	Lecture	6	6

COURSE DESCRIPTION

This course covers Markov chains in discrete time, the Poisson process and the Markov processes in continuous time

COURSE OBJECTIVES

To expose the students to the basics of stochastic process and to clarify Markov chain, Poisson process and pure birth

UNIT -ISTOCHASTIC PROCESSES

(20 HRS.)

Definition of stochastic process, classification of stochastic process according to time parameter space and state space - examples of stochastic process. Concept of Stationary and independent increment process

UNIT -II MARKOV CHAIN

(20 HRS.)

Markov chain – definitions and examples – higher transition probabilities – Chapman – Kolmogorov equations (discrete) - simple problems only.

UNIT -III POISSON PROCESS

(20 HRS.)

. **Poisson Process -** (Self Study) - Postulates - Properties - Related distributions - exponential, uniform, geometric and **negative binomial distributions -** (Self Study).

UNIT -IVBIRTH AND DEATH PROCESS

(20 HRS.)

Pure Birth Process – Yule-Fury process – Birth and Death Process – Immigration - Emigration processes

UNIT -V TIME SERIES (20 HRS.)

Time Series - **Introduction Moving Average Process-** (Self Study)-Autoregressive Process - Autoregressive Process of Order Two - Autoregressive Moving Average process (ARMA Process

TEXT BOOKS:

- 1. J. Medhi, *Stochastic Process*, New age International, 4^t nedition (2009).
 - Chapter 1(1.5,) Chapter 2(2.1, 2.2), chapter 3(3.1, 3.2, 3.3.3, 3.4), Chapter 10(10.1, 10.2).
- 2. T. Veerarajan, *Probability, Statistics and Random Processes*, Second edition, TataMcGraw-Hill Publishing Company Ltd., New Delhi (2003).

REFERENCE BOOKS:

- 1. W. Feller, *Introduction to Probability Theory and its Applications*, Volume I, Wiley Eastern Ltd, New York (1972).
- 2. S. Karlin and H.M.Taylor, *A Fist course in Stochastic Processes*, Academic Press, New York (1975).
- 3. S.M. Ross, *Stochastic Processes*, John Wiley and Sons, New York (1983).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6CC14	Operations Research	Lecture	5	4

COURSE DESCRIPTION

This helps in solving in different environments that needs decisions.

COURSE OBJECTIVES

To aim at familiarizing the students with quantitative tools and techniques, which are frequently applied to business decision making and to provide a formal quantitative approach to problem solving.

UNIT - I SEQUENCING PROBLEM

(15 HRS.)

Introduction - problem of sequencing - Basic terms used in sequencing - Processing n jobs through two machines - Processing n jobs through k machines - Processing 2 jobs through k machines (Self Study).

UNIT -IIGAMES AND STRATEGIES

(15 HRS.)

Introduction – Two person zero sum games – Some basic terms - The maximin-minimax principle – Games without saddle points – mixed strategies – Graphical solution of $2 \times n$ and m $\times 2$ games – Dominance property – Arithmetic method for n $\times n$ game – General solution of m $\times n$ rectangular games.

UNIT -III INVENTORY CONTROL

(15 HRS.)

Introduction – The Inventory decisions – Cost associated with inventories – Factors affecting inventory control - Economic Order Quantity(EOQ) – Deterministic inventory problems with no shortages - Deterministic inventory problems with shortages – Probabilistic inventory problems.

UNIT -IV QUEUING THEORY

(15 HRS.)

Introduction- Queuing system – Elements of Queuing system – Operating characteristics of queuing system – Probability distributions in queuing systems – Classification of queuing models – Definition of transient and steady states – Poisson queuing systems – Model I (M/M/1): (∞ / FIFO) – Model II (M/M/I): (∞ /SIRO) - Model III (M/M/1): (N/FIFO).

UNIT -V NETWORK SCHEDULING BY PERT/CPM

(15 HRS.)

Introduction – Network and basic components – Logical sequencing – Rules of network construction – Critical path analysis – probability considerations in PERT

TEXT BOOK:

UNIT I - Chapter 12: Sections 12.1 to 12.6

UNIT II - Chapter 17: Sections 17.1 to 17.9

UNIT III - Chapter 19: Sections 19.1 to 19.7, 19:12.1, 19:12.2

UNIT IV - Chapter 20: Sections 20.1 to 20.8 (Up to model III)

UNIT V - Chapter 21: Sections 21.1 to 21.6

- 1. Prem Kumar Gupta and D.S Hira, *Problems in Operations Research*, Sultan Chand & Co. Ltd., Revised edition (2009).
- 2. P.K Gupta and Man Mohan, *Problems in Operations Research*, Sultan Chand & Sons (2007).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6ME3	Actuarial statistics	Lecture	5	5

COURSE DESCRIPTION

The course covers the applications of insurance and finance.

COURSE OBJECTIVES

The Actuarial statistics curriculum aims at providing the academics and professional training to students who wish to join the actuarial profession

UNIT -ISIMPLE & COMPOUND INTEREST

(15 HRS.)

Elements of simple & compound interest - nominal rate of interest i(m) and effective rate of interest i - Force of interest δ - relationship between different rates of interest- expression for δ by use of calculus - relationship between nominal and effective rates of interest - present value - varying rates of interest - equation of value - equated time - **simple discount** - **discount & discounted value** - (Self Study).

UNIT -IIANNUITIES

(15 HRS.)

Annuities – immediate annuity – annuity due – perpetuity - deferred annuities - present values, accumulated amounts of annuities. Increasing and decreasing annuities.

UNIT -III REDEMPTION OF LOANS

(15 HRS.)

Redemption of Loans – Amortization and Sinking Funds - Average Yield of interest on the Life Fund of an insurance office. Simple Problems

UNIT -IVPREMIUM(15 HRS.)

Premiums; general principles, natural premiums, office & net premiums, loading for expenses with and without profit premiums, adequacy of premiums, relative consistency. Simple Problems.

UNIT -V POLICY VALUES

(15 HRS.)

Policy values - retrospective and prospective policies; Surplus - sources of surplus, distribution of surplus.

TEXT BOOKS:

- Dixit, S.P., Modi, C.S., Joshi, R.V.(2000): Mathematical Basis of life Assurance, IC-81 (Published by Insurance Institute of India, Bombay -400001).
- 2. Frank Ayers, J.R. (1983): Theory and problems of mathematics of finance, Schaum's outline series, McGraw-Hill book company, Singapore.

REFERENCE BOOKS:

- 1. Donald, D.W.A. (1975): Compound Interest and Annuities certain, Heinemann, London
- 2. Zima, P. and Brown, R.L. (2005): Theory and problems of mathematics of finance, 2nd edition, Tata McGraw Hill.

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6ME4	Regression Analysis	Lecture	5	5

COURSE DESCRIPTION

This course focuses on building a greater understanding on statistical tools for applying the linear regression model and its generations.

COURSE OBJECTIVES

To expose the students to regression models applicable to real life situation.

UNIT -ICORRELATION

(15 HRS.)

Partial and multiple correlation coefficients, relationships among simple, multiple and partial correlation coefficients – biserial correlation coefficients.

UNIT -IISIMPLE LINEAR REGRESSION MODEL - I (15 HRS.)

Simple linear regression model: Description of the data model – estimation of parameters by least square method and test of hypothesis – index of fit – predicted values and standard errors – evaluation of fit – analysis of residuals.

UNIT -III SIMPLE LINEAR REGRESSION MODEL - II (15 HRS.)

Effect of outliers in simple regression – model, adequacy and residual plots – deletion of data points – **transformation of variables – transformation to achieve linearity** (Self Study) – transformation to stabilize variance – removal of heterogeneity – principles of weighted least squares.

UNIT -IV MULTIPLE LINEAR REGRESSION

(15 HRS.)

Multiple linear regressions: Description of the Data model – properties of least squares estimators – predicted values and standard errors in multiple regression – generalized least squares.

UNIT -V INFERENCE ON GLM

(15 HRS.)

Inference on GLM: Test of hypothesis on the linear model – Assumption about the explanatory variable – testing a subset of regression coefficient equals to zero – testing of equality of regression coefficients.

TEXT BOOK:

D.C.Montgomery, E.A Peck, and G.G. Vining, *Introduction to linear regression analysis*, third edition, John Wiley and Sons, Inc. (2003).

- 1. N.R.Draper, and H.Smith, *Applied Regression Analysis*, third edition, John Wiley and Sons, Inc. (2003).
- 2. J.Johnson, *Econometric methods*, third edition, McGraw-Hill International (1984).
- 3. V.K.Kapoor, and S.C.Gupta, *Fundamentals of Mathematical Statistics*, Sultan Chand and Sons (2007).

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6ME5	Numerical Methods	Lecture	5	5

COURSE DESCRIPTION

This course enables the students to solve equations using various Numerical Methods

COURSE OBJECTIVES

To enable the students to solve Algebraic, Transcendental, Differential Equations using various Numerical methods like Bisection, Runge-Kutta, Euler and Taylor

UNIT -IALGEBRAIC AND TRANSCENDENTAL EQUATIONS (15 HRS.)

Introduction - Bisection method - Iteration method - Regula-falsi method - Newton-Raphson method. (No derivations).

UNIT -IISIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS (15 HRS.)

Introduction - Gauss Elimination method - Gauss Jordan method - Calculation of inverse of a matrix - Gauss Jacobi Iteration method - Gauss-Seidel iteration method. (No derivations).

UNIT -III FINITE DIFFERENCES & INTERPOLATION(15HRS.)

Difference operators - Other difference operators-Relation between the operators - (Self Study) - Newton's forward Interpolation formula-Newton's backward Interpolation formula- (Self Study)- Gauss forward Interpolation formula - Gauss backward Interpolation formula- (Self Study)-Stirling's formula - Lagrange's interpolation formula - Divided difference - Newton's Divided difference formula - Inverse interpolation. (No derivations

UNIT -IVNUMERICAL DIFFERENTIATION AND INTEGRATION(15HRS.)

Derivatives using Newton's forward difference formula-Derivatives using Newton's backward difference formula- Derivatives using Central difference formula-Maxima and minima of the interpolating polynomial-Numerical Integration – Trapezoidal Rule – Simpson's one third rule.(No derivations

UNIT -V NUMERICAL SOLUTION OF DIFFERENTIAL EQUATION (15HRS.)

Taylor series method – Picard's method – Euler's method – Modified Euler's method- Runge -Kutta methods –Second order Runge-Kutta method- Higher order Runge-Kutta method Predictor-Corrector formulae-Milne's Predictor-Corrector formulae-Adam's Predictor- Corrector equations.(No derivations

TEXT BOOK:

M.K.Venkataraman, *Numerical Methods in Science and Engineering*, The National publishing company, fifth edition.

- 1. S.Arumugam, Thangapandi Isaac and A. Soma Sundaram, Numerical Analysis, New Gamma Publishing House (2007).
- 2. S.S.Sastry, *Introductory Methods of Numerical analysis*, Prentice Hall of India Private Limited (1991)

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6ME6	Industrial Statistics	Lecture	5	5

COURSE DESCRIPTION

This course is concerned with maintaining and improving the quality of goods and services

COURSE OBJECTIVES

This course enables the students competent to undertake industrial researches

UNIT -IINVENTORY PLANNING

(15HRS.)

. Inventory planning: Concept of planned inventory policies: Deterministic models - Policy when inventory levels are reviewed continuously and demands occur uniformly with and without shortage costs Economic order quantity.

UNIT -IIPRODUCTION PLANNING

(15 HRS.)

. Policy for production planning when inventory levels are reviewed periodically Stochastic models Single period model with no set up cost having zero or non-zero initial stock {(s,S) policy} Solving special cases using computer packages.

UNIT -III FORECASTING

(15HRS.)

Forecasting: Concept of forecasting and its applications in manufacturing and non manufacturing industrial situations Different methods of forecasting including average, last value, weighted average(exponential smoothing) Forecasting in presence of linear trends

using least square methods(Self Study) - Forecasting in presence of seasonal effects Solving special cases using computer package.

UNIT -IVRELIABILITY

(15HRS.)

. Reliability: Definitions and relationships between survival function, hazard function, hazard rate of a non-negative random variable - Parametric distributions: Weibull, amma, Lognormal and Exponential as life time distributions - Concept of aging, IFR, IFRA classes of distributions and their dual.

UNIT -V STRUCTURE FUNCTIONS

(15HRS.)

Coherent system as binary function: Minimal cut and path sets (vectors) -Representation of structure function of series, parallel and k out of n: G systems of independent components - Minimal cut and path structure functions - Dual of a coherent structure Derivation of reliabilities of above structures.

TEXT BOOK:

- 1. H.A. Taha, Operations Research, Macmillan Publishing Co. (1999).
- 2. F.S.Hiller and G.J.Libermann, *Introduction to Operations Research*, 6th Edition, McGraw Hill (1995).
- 3. L.J.Bain and Enghardt, Statistical Analysis of Reliability and Life Testing Models, Marckel Dekker (1991).

- 1. S.Zacks, Introduction to Reliability Analysis, Probability models and Statistical methods, Springer Verlag (1992).
- 2. R.E.Barlow and F.Proschan, Statistical theory of Reliability and Life testing: Probability models, Holt, Rinehart and Winston (1975)

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6SB5	Practical Statistics IV	Lecture	2	2

COURSE DESCRIPTION

The course provides an application related to statistical quality control, non parametric tests & design of experiments

COURSE OBJECTIVES

To expose the students to the analysis of statistical techniques in real life situations.

- 1. Control Charts for Variables \bar{X} , R chart
- 2. Control Charts for Attributes p, np, c-chart
- Acceptance sampling for attributes single sapling plan OC, AOQ, ASN and ATI
- 4. Acceptance sampling for attributes Double sampling plan OC, AOQ, ASN and ATI curves
- 5. Non- Parametric tests Sign test, Wilcoxon test, Mann-Whitney U test, Median test, Run test, Kolmogorov Smirnov one sample test, Kruskal Wallis
- 6. Anova One way and Two way
- 7. Design of Experiment CRD, RBD, LSD
- 8. Missing Plot
- 9. Factorial Experiment 2^22^3 experiments with completely confounding
- 10. Factorial Experiment $2^2 2^3$ experiments with partially confounding.

For those who joined in 2016 onwards

PROGRAMME CODE	COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
USST	ST6SB6	Statistical Software - R	Lecture and Practical	2	2

COURSE DESCRIPTION

The course is introduced to learn a programming language which helps to handle all aspects of statistical software.

COURSE OBJECTIVES

To expose the students on the applications of statistical analysis using statistical package.

- 1. Diagrammatic Representation Bar Chart, Pie Diagram
- 2. Construction of Discrete and Continuous Frequency Tables from raw data
- 3. Graphical Representation Histogram , Box- Whiskers plot
- 4. Descriptive Statistics
- 5. Simple correlation, Rank correlation,
- 6. Regression Fitting of Poisson distribution
- 7. Fitting of Normal distribution
- 8. Parametric tests Means, Variances and Proportions
- 9. Chi square test for goodness of fit
- 10. Chi square test for independence samples
- 11. Non- Parametric tests Sign test, Wilcoxon test, Mann-Whitney U test, Median test, Run test, Kolmogorov Smirnov one sample test, Kruskal Wallis

- 12. ANOVA one way and two way
- 13. Design of Experiment CRD, RBD, LSD
- 14. Factorial Experiment $2^2 2^3$ experiments with total and partial confounding.

REFERENCE BOOKS:

- 1. SudhaPurohit, Sharad D Gore and Shailaja R. Deshmukh, Narosa Publishing House, New Delhi (2015).
- 2. Jured. P. Lander, *R for everyone, advance Analytics and Graphics*, Addison-Wesley, USA (2014).
- 3. Online help manuals and other materials available in R project site will form basis for the course