FATIMA COLLEGE (AUTONOMOUS),MADURAI-625018 COURSE OUTCOMES

NAME OF THE PROGRAMME: B.Sc MATHEMATICS / B.Sc MATHEMATICS(SF)
PROGRAMME CODE: UAMA / USMA

CourseCode	Coursetitle	CourseOutcomes
19M1CC1/19G1CC1	Calculus	CO1: Explain higher derivatives and apply Leibnitz theorem to find the $\mathrm{n}^{\text {th }}$ derivative of functions. CO2: Solve problems on curvature, envelopes, asymptotes and Curve tracing. CO3: Construct reduction formula for trigonometric functions. CO4: Define Jacobian, double \& triple integrals and apply the knowledge of change of variables to solve the problems in double and triple integrals. CO5: Construct Fourier series by recalling integration.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { 19M1CC2/ 19G1CC2 } & \text { Classical Algebra } & \begin{array}{l}\text { CO1: Explain sets, relations and functions } \\
\text { CO2: Define binomial series, logarithmic and exponential series and }\end{array}
$$

solve problems.

CO3: Identify Relations between the roots and coefficients of equations.

CO4: Explain the transformations of equations.\end{array}\right\}\)| CO5: Recognize the important Methods in finding roots. |
| :--- |
| $19 \mathrm{M} 1 \mathrm{AC} 1 / 19 \mathrm{G} 1 \mathrm{AC} 1$ |

19P1ACM 1	Allied Mathematics	CO1: Find summation of any series. CO2: Explain the concepts of theory of equations. CO3: Calculate roots of equations using different methods. CO4: Expand trigonometric functions CO5: Apply the Leibnitz's theorem to find the $\mathrm{n}^{\text {th }}$ derivative
$\begin{aligned} & \text { 19M1NME / } \\ & \text { 19M2NME/ 19G1NME/ } \\ & \text { 19G2NME } \end{aligned}$	Quantitative Aptitude	CO1: Solve problems on ages. CO2: Illustrate profit and loss with examples. CO3: Explain partnership and related problems. CO4: Discuss problems on time and work. CO5: Solve problems on time and distance.
19M2CC3/ 19G2CC3	Differential Equations	CO1: Solve problems in differential equations of first order CO2: Classify homogeneous and Non homogeneous differential equations of second order and solve problems. CO3: Solve differential equation problems using Laplace transform. CO4: Define Partial differential equations and solve problems. CO5: Solve problems on Growth, decay and chemical reactions.

19M2CC4/19G2CC4	Numerical Methods	CO1: Solve algebraic and transcendental equations using various methods. CO2: Identify the various methods of solving simultaneous linear algebraic equations. CO3: Recognize difference operators and apply the concept of interpolation. CO4: Compute the values of the derivatives at some point using numerical differentiation and integration. CO5: Solve problems on higher order differential equations using Euler's, Runge- kutta and Predictor- Corrector methods
19M2AC2 / 19G2AC2	Advanced Statistics	CO1: Classify discrete and continuous random variables and characteristics of Binomial distribution and Poisson distribution CO2: Explain and illustrate the properties of Normal distribution and solve variety of problems. CO3: Distinguish between a population and a sample and explain testing of hypothesis. CO4: Explain chi square distribution, t- distribution and describe their various applications is Statistics. CO5: Define F- distribution and apply it to solve problems in analysis Of variance.

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 19P2ACM2 } & \text { Allied Mathematics-II } & \begin{array}{l}\text { CO1: Solve linear differential equations. } \\
\text { CO2: Solve second order linear differential equations with variable } \\
\text { coefficient. }\end{array}
$$

CO3: Define Laplace transform and apply it to solve differential

equation.

CO4: Explain the concepts of gradient, divergence, curl and their

properties\end{array}\right\}\)| CO5: Apply line, volume and surface integrals to verify the Gauss |
| :--- |
| divergence and Stoke's theorem. |

$\begin{aligned} & 19 \mathrm{M} 3 \mathrm{CC} 6 / \\ & 19 \mathrm{G} 3 \mathrm{CC} 6 \end{aligned}$	VECTOR CALCULUS AND FOURIER TRANSFORM	CO1: Explain the concept of differentiation of vectors. CO 2 : Compute divergence and curl of vectors CO3: Solve problems on line and surface integrals. CO4: Compute Fourier sine and cosine transforms. CO5: Describe the properties of Fourier transforms.
19M3SB1 / 19G3SB1	APPLICATIONS OF CALCULUS AND DIFFERENTIAL EQUATIONS	CO1: Explain Beta and Gamma functions and their properties. CO2: Solve the problems in Maxima minima of functions of two variables. CO3: Describe trajectories and orthogonal trajectories. CO4: Solve Brachistrochone problems. C05. Discuss dynamical problems with variable mass.
19C3ACM1	ALLIED MATHEMATICS -I	CO1: Appraise rank of a matrix, Eigen value and Eigen vectors. CO2: Obtain higher derivatives of functions. CO3: Solve exact and higher order differential equations. CO4: Expand trigonometric functions. CO5: Define Moments, kurtosis and to apply the same.

19B3ACM 1	LINEAR PROGRAMMING	CO1: Define basic concepts of Linear Programming problems. CO2: Apply various simplex methods to solve linear programming problems. CO3: Construct dual problem and solve the primal problem. CO4: Solve transportation problems. CO5: Distinguish assignment problem and travelling salesman problem.
$\begin{aligned} & 19 \mathrm{M} 4 \mathrm{CC} 7 / \\ & 19 \mathrm{G} 4 \mathrm{CC} 7 \end{aligned}$	SEQUENCES AND SERIES	CO1: Define basic concepts of sequences. CO2: Explain subsequences and Cauchy sequences. CO3: Differentiate various convergence test for series and use them to solve problems. CO4: Recognize alternating, convergent, conditionally and absolutely convergent series. CO5: Distinguish the behaviour of series and power series.
19M4CC8 / 19G4CC8	LINEAR ALGEBRA	CO1: Define Vector Space and explain its various concepts. CO2: Illustrate Inner Product Spaces. C03. Define basic concepts of matrices and solve linear equations. CO 4. Appraise Eigen Value and Eigen Vectors of matrices. CO 5. Describe bilinear forms and quadratic forms.

$\begin{aligned} & \text { 19M4SB2/ } \\ & \text { 19G4SB2 } \end{aligned}$	FOUNDATIONS OF MATHEMATICS	CO1: Recall some expansions of Trigonometric functions. CO 2: Explain Logarithms of Complex quantities. CO 3: Describe properties of integers. CO 4: Solve puzzles using Chinese remainder Theorem. CO 5: Analyse inequalities.
19C4ACM2	ALLIED MATHEMATICS - II	CO 1: Describe the concepts of groups, subgroups and normal subgroups. CO 2: Compute the definite integral and construct reduction formula. CO 3: Solve differential equations using Laplace transforms. CO 4: Explain the concepts of correlation, rank correlation coefficient and regression. CO 5: Apply the principle of least squares to fit a straight line and parabola.
19B4ACM2	ALGEBRA AND GRAPH THEORY	CO 1: Recall relations and functions. CO 2: Appraise Eigen values and Eigen vectors. CO 3: Define various types of graphs. CO 4: List out the characterization of trees. CO 5: Apply different algorithms to find the shortest path in graphs.

