

## FATIMACOLLEGE (AUTONOMOUS), MADURAI-625018 COURSE OUTCOMES

## NAME OF THE PROGRAMME: M.Sc CHEMISTRY PROGRAMME CODE: PSCH

| COURSE CODE | COURSE TITLE                                                                                                                           | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19PG1C1     | Inorganic chemistry-I<br>(basic concepts, covalent and ionic<br>bonding, solid state and<br>crystallography, and nuclear<br>chemistry) | <ul> <li>CO1: To analyse all chemical species involved in organic and Inorganic reactions and to identify those as acid and bases</li> <li>CO2: To classify the bonds as ionic and covalent and to compare the theories</li> <li>CO3: To categorize the solid systems, to calculate the lattice energy and draw conclusions on their stability</li> <li>CO4: To predict the structures and magnetic properties of Inorganic compounds</li> <li>CO5: To gain indepth knowledge of nuclear reactions, reactors and the</li> </ul>                                                                                                                   |
| 19PG1C2     | Organic chemistry-I                                                                                                                    | applications of radio isotopes in all fields<br>CO1: To interpret the concept of aromaticity and the main properties of aromatic<br>compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1910102     | (reaction mechanism and<br>stereochemistry)                                                                                            | <ul> <li>CO2: To explore reactivity patterns of conjugated ,aromatic molecules and to evaluate the kinetics and thermodynamics controlled reactions.</li> <li>CO3: To define the fundamentals of chirality, prochirality, symmetry elements and applications of atropisomers.</li> <li>CO4: To comprehend of nucleophiles, electrophiles, electronegativity, and</li> </ul>                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                        | resonance<br>CO5: To sketch the preparation and properties of heterocyclic compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19PG1C3     | Physical chemistry-I<br>(Applied electro chemistry &<br>statistical thermodynamics)                                                    | <ul> <li>CO1: Calculate the molar conductance, degree of dissociation and electrical potential<br/>Possess thorough understanding of Debye-Huckel equation</li> <li>CO2: To gain knowledge of Electrocatalysis and Electrosynthesis</li> <li>CO3: Describe indetail about the three laws of thermodynamics</li> <li>CO4: Restate in their own words about the concept of distribution, thermodynamic<br/>probability and most probable distribution</li> <li>CO5: Correlate and explain the partial molar properties, chemical potential</li> <li>CO6: Categorize and compare various partition functions - translational, rotational,</li> </ul> |
|             |                                                                                                                                        | vibrational and electronic partition functions<br>CO7: Distinguish various Fermi-Dirac and Bose-Einstein statistics and Maxwell-<br>Boltzmann statistics based on the nature of theparticles.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 19PG1C4 | Inorganic qualitative analysis                                                                                        | CO1: To study the principle of distribution of common and rare metal ions in different groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                       | <ul> <li>CO2: To know the inter- and intra group precipitation and separation of metal ions.</li> <li>CO3: To improve the skill in the qualitative analysis of rare metal ions in different groups.</li> <li>CO4: To identify the methodology to analyse a metal ion in the presence of another metalion.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19PG1C5 | Organic qualitative analysis                                                                                          | CO1: To be skilled in the separation of binary organic mixtures<br>CO2: To gain knowledge on the skills of doing micro level analysis<br>CO3: To know the methods of qualitative analysis of organic compounds<br>CO4: To learn about the preparation of suitable derivative of the organic functional groups<br>CO5: To prepare organic compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19C1EDC | Essentials of life                                                                                                    | <ul> <li>CO1: To acquire knowledge of common medicine.</li> <li>CO2: To express the concentration of solution in volumetric analysis.</li> <li>CO3: To differentiate column and TLC technique.</li> <li>CO4: To classify the different types of polymers and its characteristics.</li> <li>CO5: To analyze the different types of soil and differentiate natural fertilizer from artificial fertilizer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19PG2C6 | Inorganic chemistry –II<br>(Advanced coordination chemistry)                                                          | <ul> <li>CO1: Compare the stabilities of complexes using stability constants and to identify the types of isomers.</li> <li>CO2: To describe the theories of co-ordination compounds to understand the colours and magnetic properties and their position in the spectrochemical series.</li> <li>CO3: Investigate the structures of complexes using IR,NMR ,E SR and other spectral Techniques.</li> <li>CO4: To possess a thorough understanding of electronic spectra of complexes.</li> <li>CO5: To arrive at the mechanisms of substitution reactions in six and four coordinated complexes using kinetic studies.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |
| 19PG2C7 | Organic chemistry –II<br>(Elimination and addition<br>reactions, organic spectroscopy<br>and conformational analysis) | <ul> <li>CO1:To comprehend the mechanism of elimination and substitution reactions and to apply the stereochemistry in E1, E2, ionic and pyrolytic eliminations.</li> <li>CO2:To interpret the concept of nucleophilic and free radical addition reactions and metal hydride reduction and to discriminate the reactivity of organometalic reagents.</li> <li>CO3: To explore reactivity patterns of substituted cyclohexanes and to employ conformational reactivity in cis and trans decalins and to apply conformations in SN1, SN2, ionic, pyrolytic eliminations and NGP reactions.</li> <li>CO4: To acquire a complete knowledge of the principles of UV, IR spectroscopy and to examine the various functional groups present in organic molecules using λmax and IR frequency values .</li> <li>CO5: To differentiate the molecular rearrangements and to solve the simple problems and to recall the various naming reactions and to interpret the products.</li> </ul> |

| 19PG2C8  | Physical chemistry –II            | CO1: To acquire knowledge about the basic concepts of chemical kinetics                                                                                                                   |
|----------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | (Chemical kinetics and quantum    | CO2: To identify and analyze the effect of physical parameters $\mu$ , $\Box$ , D on rate of reaction                                                                                     |
|          | · -                               | CO3: To derive rate constant for reactions using Lindemann, Hinshelwood, RRK, RRKM                                                                                                        |
|          | mechanics)                        | Theories.                                                                                                                                                                                 |
|          |                                   | CO4: To develop a knowledge and understanding of the concept Normalisation and                                                                                                            |
|          |                                   | orthogonalization and to solve Schrodinger wave equation for particle in a one                                                                                                            |
|          |                                   | dimensional box, three dimensional box and Rigid rotator.                                                                                                                                 |
|          |                                   | CO5: To apply variation and perturbation method to He atom6.To calculate Delocalisation                                                                                                   |
|          |                                   | energy and $\pi$ -bond order of conjugated molecules like cyclobutadiene, cyclopropenyl                                                                                                   |
| 100000   |                                   | system and 1,3 butadiene.                                                                                                                                                                 |
| 19PG2C9  | Inorganic Practicals –II          | CO1: To enable the students to acquire the quantitative skills in volumetric analysis and                                                                                                 |
|          | (Inorganic quantitative analysis) | gravimetric analysis                                                                                                                                                                      |
|          |                                   | CO2: To improve the skill in quantitative estimation of metal ions by various titric methods<br>CO3: To identify the methodology to estimate a metal ion in the presence of another metal |
|          |                                   | ion.                                                                                                                                                                                      |
|          |                                   | CO4: To be skilled in synthesis of inorganic complexes.                                                                                                                                   |
| 19PG2C10 | Organic Practicals –II            | CO1: To develop the ability for synthesizing organic compounds by single stage.                                                                                                           |
| 19102010 | 0                                 | CO2: To develop the ability for synthesizing                                                                                                                                              |
|          | (Organic quantitative analysis)   | organic compounds by double stage.                                                                                                                                                        |
|          |                                   | CO3: To study the reaction mechanism.                                                                                                                                                     |
|          |                                   |                                                                                                                                                                                           |
| 19C2EDC  | EDC( Essentials of life)          | CO1: To acquire knowledge of common medicine.                                                                                                                                             |
|          |                                   | CO2: To express the concentration of solution in volumetric analysis.                                                                                                                     |
|          |                                   | CO3: To differentiate column and TLC technique.                                                                                                                                           |
|          |                                   | CO4: To classify the different types of polymers and its characteristics.                                                                                                                 |
|          |                                   | CO5: To analyze the different types of soil and differentiate natural fertilizer from artificial                                                                                          |
|          |                                   | fertilizer.                                                                                                                                                                               |
| 10000011 |                                   | CO1: To acquire a complete knowledge of the basic principles of 1H-NMR, 13C-NMR and                                                                                                       |
| 19PG3C11 | Organic chemisty-III              | Mass spectroscopy                                                                                                                                                                         |
|          | (Spectroscopy and pericyclic      | CO2: To be acquainted with complete knowledge of photochemistry of ketone & cyclo                                                                                                         |
|          | reactions)                        | addition reactions and to develop an understanding of the significance of the                                                                                                             |
|          | reactions)                        | number, and splitting of signals in NMR                                                                                                                                                   |
|          |                                   | CO3: To be competent to assign structures to simple molecules on the basis of nuclear                                                                                                     |
|          |                                   | magnetic resonance spectra                                                                                                                                                                |
|          |                                   | CO4: To distinguish the similarities and differences of Pericyclic reactions and Cyclo                                                                                                    |
|          |                                   | addition and sigmatropic reactions                                                                                                                                                        |
|          |                                   | CO5: To apply the Spectral concepts to solve the problems, to elucidate the structures of                                                                                                 |
|          |                                   | simple organic compounds using the data from all the spectral techniques                                                                                                                  |

| 19PG3C12 | Physical chemistry-III                                  | CO1: To learn about symmetry elements and symmetry operations, the point groups and character table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | (Group theory, surface chemistry<br>and macromolecules) | <ul> <li>CO2: To Describe the selection rule for infrared-active and Raman active transitions, electronic transitions</li> <li>CO3: To analyse the hybridization of given compounds and to apply HMO theory to Ethylene and some conjugated systems</li> <li>CO4: To Classify of surface active agents, Polymers, and to derive Gibbs adsorption and BET isotherms</li> <li>CO5: To explain the kinetics of vinyl, cationic and anionic polymerizations and to determine the mass of polymers.</li> </ul>                                                                                                                             |
| 19PG3C13 | Green chemistry                                         | <ul> <li>CO1: To know about the alternative feedstock To study about the process and advantages of alternative materials</li> <li>CO2: To get familiarise about the green house technology</li> <li>CO3: To understand the advantage and disadvantages of protecting the cultivation.</li> <li>CO4: To study about the biocatalytic reactions and fermentation</li> <li>CO5: To learn about the industrial case studies</li> </ul>                                                                                                                                                                                                    |
| 19PG3CE1 | Material chemistry                                      | CO1: Distinguish between bulk material and nanomaterials<br>CO2: Choose the suitable synthetic methods to prepare particular nanomaterials<br>CO3: Interpret the structure of nanomaterials using various characterisation techniques<br>CO4: Categorize and identify the different types Carbon nano structures<br>CO5: Summarise the uses of nanomaterials in various fields                                                                                                                                                                                                                                                        |
| 19PG3CE2 | Bio-organic chemistry                                   | CO1: To tabulate the functions and uses of enzymes<br>CO2: To design of drugs using molecular modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19PG3C14 | Physical Practical's-I<br>(Electrical experiments-I)    | <ul> <li>CO1: Verify Oswald's dilution law and calculate the degree of dissociation of acetic acid using the following Conductance values.</li> <li>CO2: Determine the rate constant for the alkaline hydrolysis of ethyl acetate by conductivity method</li> <li>CO3: Estimate the amount of unknown CH<sub>3</sub>COOH and HCl present in the mixture of 0.01N HCl and CH<sub>3</sub>COOH by titrating against std. NaOH either by using pH values or Conductance values</li> <li>CO4: Determine the rate constant for the oxidation of ethyl alcohol by K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> spectrophotometrically</li> </ul> |
|          |                                                         | CO5: Estimate the amount of given Ferrous sulphate by titrating against Potassium dichromate potentiometrically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 19PG4C15<br>19PG4C16 | Inorganic chemistry –III<br>(Organometallic chemistry-I &II,<br>Basic concepts for bio-inorganic<br>chemistry-I&II and inorganic<br>chains, rings and cages)<br>Organic chemistry –IV | <ul> <li>CO1: Illustrate the structure and mode of bonding in organometallic complexes</li> <li>CO2: Apply the different electron counting procedures to predict the shape and stability of organometallic complexes.</li> <li>CO3: Illustrate the mechanism of dioxygen binding in various oxygen carrier proteins</li> <li>CO4: Classify and identify the different types of metalloenzymes and metallo proteins based on their biological functions.</li> <li>CO5: Interpret the structure of borazines, boranes and carboranes</li> <li>CO1: To differentiate the carbon –carbon bond forming reactions and to interpret the</li> </ul>                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | (Retrosynthesis, reactions and<br>reagents, natural<br>Products)                                                                                                                      | products and to explore reactivity patterns of various coupling reactions<br>CO2: To elucidate the structural units of quinine, morphine, $\Box$ -pinene and $\Box$ -codinene<br>CO3: To correlate the skeletal units of nucleotides and nucleosides- RNA and DNA<br>CO4: To categorize the reducing and oxidizing agents and its applications.<br>CO5: To Sketch the effective and logical synthetic route for the synthesis of new molecules                                                                                                                                                                                                                                                                                                |
| 19PG4C17             | Physical chemistry –IV<br>(Spectroscopy, kinetic theory of<br>gases, photochemistry and<br>radiation chemistry)                                                                       | <ul> <li>CO1: To Outline the selection rules for rotational and vibrational spectra and rationalize the role of the molecular dipole moment in the selection rules.</li> <li>CO2: To apply knowledge to detailed understanding of electronic states of atoms, molecules, Franck-Condon Principle.</li> <li>CO3: To predict the number of ESR signals of organic radical anions, Complexes and NQR transitions.</li> <li>CO4: To understand molecular velocities in one, two and three dimensions</li> <li>CO5: To distinguish between Fluorescence and Phosphorescence, Primary and secondary processes, radiative and non-radiative transitions, to compare Ground and excited state acidity, dipole moments and redox potentials</li> </ul> |
| 19PG4CE3/            | Analytical Chemistry                                                                                                                                                                  | <ul> <li>CO1: To acquire the complete knowledge of C language</li> <li>CO2: To develop logics which will help them to create programs, applications of chemistry problems in C.</li> <li>CO3: To explicate the theoretical principles of selected instrumental methods within electro analytical and spectrometric/spectrophotometric methods, and main components in such analytical instruments.</li> <li>CO4: To explain the confidence level and confidence limit, the sources of random errors and effects of random errors on analytical results.</li> <li>CO5: To illuminate the theoretical principles of various separation techniques in chromatography, and typical applications of chromatographic techniques.</li> </ul>         |
| 19PG4CE4             | Chemical Engineering                                                                                                                                                                  | CO1: To write C- Program using various features of C- language<br>CO2: To categorize the various conditioning methods in water treatment<br>CO3: To apply the principles involved in spectrophotometric analysis.<br>CO4: To compare the mechanism between dry corrosion and wet corrosion<br>CO5: To synthesize some industrially important polymers.                                                                                                                                                                                                                                                                                                                                                                                        |

| 19PG4C18 | Physical practicals-II       | CO1: To study the adsoption of oxalic acid on charcoal                                                         |
|----------|------------------------------|----------------------------------------------------------------------------------------------------------------|
|          | (Non-electrical experiments) | CO2: To verify the Freundlich adsorption isotherm for the adsorption of acetic acid on activated charcoal      |
|          |                              | CO3: To determine the rate constant for acid catalysed hydrolysis methyl acetate at different temperatures.    |
|          |                              | CO4: To calculate the activation energy of acid catalysed hydrolysis methyl acetate at different temperatures. |
|          |                              | CO5: To study the effect of ionic strength on rate constant                                                    |
| 19PG4CPR | Project                      | CO1: To carry out scientific experiments                                                                       |
|          |                              | CO2: To accurately record and analyze the results of such experiments                                          |